Visual Analytics for Supporting Conflict Resolution in Large Railway Networks View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2019-04-03

AUTHORS

Udo Schlegel , Wolfgang Jentner , Juri Buchmueller , Eren Cakmak , Giuliano Castiglia , Renzo Canepa , Simone Petralli , Luca Oneto , Daniel A. Keim , Davide Anguita

ABSTRACT

Train operators are responsible for maintaining and following the schedule of large-scale railway transport systems. Disruptions to this schedule imply conflicts that occur when two trains are bound to use the same railway segment. It is upon the train operator to decide which train must go first to resolve the conflict. As the railway transport system is a large and complex network, the decision may have a high impact on the future schedule, further train delay, costs, and other performance indicators. Due to this complexity and the enormous amount of underlying data, machine learning models have proven to be useful. However, the automated models are not accessible to the train operators which results in a low trust in following their predictions. We propose a Visual Analytics solution for a decision support system to support the train operators in making an informed decision while providing access to the complex machine learning models. Different integrated, interactive views allow the train operator to explore the various impacts that a decision may have. Additionally, the user can compare various data-driven models which are structured by an experience-based model. We demonstrate a decision-making process in a use case highlighting how the different views are made use of by the train operator. More... »

PAGES

206-215

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-16841-4_22

DOI

http://dx.doi.org/10.1007/978-3-030-16841-4_22

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113198972


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "DBVIS, University of Konstanz, Konstanz, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9811.1", 
          "name": [
            "DBVIS, University of Konstanz, Konstanz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schlegel", 
        "givenName": "Udo", 
        "id": "sg:person.07642506703.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07642506703.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "DBVIS, University of Konstanz, Konstanz, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9811.1", 
          "name": [
            "DBVIS, University of Konstanz, Konstanz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jentner", 
        "givenName": "Wolfgang", 
        "id": "sg:person.010324047633.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010324047633.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "DBVIS, University of Konstanz, Konstanz, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9811.1", 
          "name": [
            "DBVIS, University of Konstanz, Konstanz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Buchmueller", 
        "givenName": "Juri", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "DBVIS, University of Konstanz, Konstanz, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9811.1", 
          "name": [
            "DBVIS, University of Konstanz, Konstanz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cakmak", 
        "givenName": "Eren", 
        "id": "sg:person.012744737235.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012744737235.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "DBVIS, University of Konstanz, Konstanz, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9811.1", 
          "name": [
            "DBVIS, University of Konstanz, Konstanz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Castiglia", 
        "givenName": "Giuliano", 
        "id": "sg:person.014110366071.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014110366071.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rete Ferroviaria Italiana S.p.A., Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.425169.d", 
          "name": [
            "Rete Ferroviaria Italiana S.p.A., Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Canepa", 
        "givenName": "Renzo", 
        "id": "sg:person.012217352646.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012217352646.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rete Ferroviaria Italiana S.p.A., Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.425169.d", 
          "name": [
            "Rete Ferroviaria Italiana S.p.A., Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Petralli", 
        "givenName": "Simone", 
        "id": "sg:person.015275326543.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015275326543.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "DIBRIS, University of Genoa, Genoa, Italy", 
          "id": "http://www.grid.ac/institutes/grid.5606.5", 
          "name": [
            "DIBRIS, University of Genoa, Genoa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oneto", 
        "givenName": "Luca", 
        "id": "sg:person.016267427345.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016267427345.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "DBVIS, University of Konstanz, Konstanz, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9811.1", 
          "name": [
            "DBVIS, University of Konstanz, Konstanz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Keim", 
        "givenName": "Daniel A.", 
        "id": "sg:person.0635776571.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635776571.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "DIBRIS, University of Genoa, Genoa, Italy", 
          "id": "http://www.grid.ac/institutes/grid.5606.5", 
          "name": [
            "DIBRIS, University of Genoa, Genoa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Anguita", 
        "givenName": "Davide", 
        "id": "sg:person.015746525501.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015746525501.73"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2019-04-03", 
    "datePublishedReg": "2019-04-03", 
    "description": "Train operators are responsible for maintaining and following the schedule of large-scale railway transport systems. Disruptions to this schedule imply conflicts that occur when two trains are bound to use the same railway segment. It is upon the train operator to decide which train must go first to resolve the conflict. As the railway transport system is a large and complex network, the decision may have a high impact on the future schedule, further train delay, costs, and other performance indicators. Due to this complexity and the enormous amount of underlying data, machine learning models have proven to be useful. However, the automated models are not accessible to the train operators which results in a low trust in following their predictions. We propose a Visual Analytics solution for a decision support system to support the train operators in making an informed decision while providing access to the complex machine learning models. Different integrated, interactive views allow the train operator to explore the various impacts that a decision may have. Additionally, the user can compare various data-driven models which are structured by an experience-based model. We demonstrate a decision-making process in a use case highlighting how the different views are made use of by the train operator.", 
    "editor": [
      {
        "familyName": "Oneto", 
        "givenName": "Luca", 
        "type": "Person"
      }, 
      {
        "familyName": "Navarin", 
        "givenName": "Nicol\u00f2", 
        "type": "Person"
      }, 
      {
        "familyName": "Sperduti", 
        "givenName": "Alessandro", 
        "type": "Person"
      }, 
      {
        "familyName": "Anguita", 
        "givenName": "Davide", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-16841-4_22", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-030-16840-7", 
        "978-3-030-16841-4"
      ], 
      "name": "Recent Advances in Big Data and Deep Learning", 
      "type": "Book"
    }, 
    "keywords": [
      "visual analytics solution", 
      "train operators", 
      "machine learning models", 
      "decision support system", 
      "data-driven models", 
      "visual analytics", 
      "use cases", 
      "largest railway network", 
      "railway transport system", 
      "learning model", 
      "experience-based model", 
      "interactive view", 
      "complex machine", 
      "support system", 
      "enormous amount", 
      "complex networks", 
      "different views", 
      "future schedules", 
      "network", 
      "train delays", 
      "decision-making process", 
      "railway segments", 
      "railway network", 
      "informed decisions", 
      "operators", 
      "transport system", 
      "analytics", 
      "performance indicators", 
      "users", 
      "decisions", 
      "machine", 
      "system", 
      "complexity", 
      "conflict resolution", 
      "model", 
      "schedule", 
      "trust", 
      "access", 
      "cost", 
      "view", 
      "high impact", 
      "delay", 
      "solution", 
      "train", 
      "low trust", 
      "prediction", 
      "data", 
      "process", 
      "use", 
      "analytic solution", 
      "amount", 
      "resolution", 
      "conflict", 
      "impact", 
      "segments", 
      "cases", 
      "indicators", 
      "disruption"
    ], 
    "name": "Visual Analytics for Supporting Conflict Resolution in Large Railway Networks", 
    "pagination": "206-215", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113198972"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-16841-4_22"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-16841-4_22", 
      "https://app.dimensions.ai/details/publication/pub.1113198972"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-10-01T06:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/chapter/chapter_23.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-030-16841-4_22"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-16841-4_22'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-16841-4_22'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-16841-4_22'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-16841-4_22'


 

This table displays all metadata directly associated to this object as RDF triples.

204 TRIPLES      22 PREDICATES      83 URIs      75 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-16841-4_22 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 anzsrc-for:0806
4 schema:author N8f53210d469d486db2c3a79f7a057cf8
5 schema:datePublished 2019-04-03
6 schema:datePublishedReg 2019-04-03
7 schema:description Train operators are responsible for maintaining and following the schedule of large-scale railway transport systems. Disruptions to this schedule imply conflicts that occur when two trains are bound to use the same railway segment. It is upon the train operator to decide which train must go first to resolve the conflict. As the railway transport system is a large and complex network, the decision may have a high impact on the future schedule, further train delay, costs, and other performance indicators. Due to this complexity and the enormous amount of underlying data, machine learning models have proven to be useful. However, the automated models are not accessible to the train operators which results in a low trust in following their predictions. We propose a Visual Analytics solution for a decision support system to support the train operators in making an informed decision while providing access to the complex machine learning models. Different integrated, interactive views allow the train operator to explore the various impacts that a decision may have. Additionally, the user can compare various data-driven models which are structured by an experience-based model. We demonstrate a decision-making process in a use case highlighting how the different views are made use of by the train operator.
8 schema:editor N0454f9b95c0146f9b12af8e35bdd6e6d
9 schema:genre chapter
10 schema:isAccessibleForFree true
11 schema:isPartOf Nc97665b25cf0446e8bd4eeda81233879
12 schema:keywords access
13 amount
14 analytic solution
15 analytics
16 cases
17 complex machine
18 complex networks
19 complexity
20 conflict
21 conflict resolution
22 cost
23 data
24 data-driven models
25 decision support system
26 decision-making process
27 decisions
28 delay
29 different views
30 disruption
31 enormous amount
32 experience-based model
33 future schedules
34 high impact
35 impact
36 indicators
37 informed decisions
38 interactive view
39 largest railway network
40 learning model
41 low trust
42 machine
43 machine learning models
44 model
45 network
46 operators
47 performance indicators
48 prediction
49 process
50 railway network
51 railway segments
52 railway transport system
53 resolution
54 schedule
55 segments
56 solution
57 support system
58 system
59 train
60 train delays
61 train operators
62 transport system
63 trust
64 use
65 use cases
66 users
67 view
68 visual analytics
69 visual analytics solution
70 schema:name Visual Analytics for Supporting Conflict Resolution in Large Railway Networks
71 schema:pagination 206-215
72 schema:productId N41575815cb48446983666938bceb07d9
73 N8b811ddfb0804f3a877538f88db8ac01
74 schema:publisher N877ce45284014503992b0e6dc5a87af8
75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113198972
76 https://doi.org/10.1007/978-3-030-16841-4_22
77 schema:sdDatePublished 2022-10-01T06:54
78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
79 schema:sdPublisher N41d66702d5cd4fcebdbb1a7080a6006c
80 schema:url https://doi.org/10.1007/978-3-030-16841-4_22
81 sgo:license sg:explorer/license/
82 sgo:sdDataset chapters
83 rdf:type schema:Chapter
84 N02b81b155b8a42518e50b3c5496d4dce rdf:first sg:person.014110366071.76
85 rdf:rest Nc08f3b1d4f7a46a19fc3636f5b96909a
86 N0454f9b95c0146f9b12af8e35bdd6e6d rdf:first Nf15a41c8a7244ae29c545c3dc10edb97
87 rdf:rest Nd0a43a0e4675402a841ce53130ef594f
88 N062dc85361754225bac7434bf5104e66 rdf:first sg:person.012744737235.02
89 rdf:rest N02b81b155b8a42518e50b3c5496d4dce
90 N286acae0084a495cac688e9f1b6bd857 rdf:first N9e018c4ad17947d59f3fb14ccbe2bf1f
91 rdf:rest N062dc85361754225bac7434bf5104e66
92 N2cc85ba8becb40b09c2730efe5730605 rdf:first N62479b3123274d34bf32140ff37b6130
93 rdf:rest Nb4f81fb9a6e54564a1cc57079df0457f
94 N2e48e57a224f4385a0db82a882790655 schema:familyName Navarin
95 schema:givenName Nicolò
96 rdf:type schema:Person
97 N3fb882a5ce904f81820aa8c1fa8cc1a3 schema:familyName Anguita
98 schema:givenName Davide
99 rdf:type schema:Person
100 N41575815cb48446983666938bceb07d9 schema:name dimensions_id
101 schema:value pub.1113198972
102 rdf:type schema:PropertyValue
103 N41d66702d5cd4fcebdbb1a7080a6006c schema:name Springer Nature - SN SciGraph project
104 rdf:type schema:Organization
105 N44b1d74aadf74611a66a7106888c4f7d rdf:first sg:person.0635776571.01
106 rdf:rest N766e2759c538433d8135a963fce07aca
107 N4d640e8de4c04f74938697fb97b002cc rdf:first sg:person.010324047633.88
108 rdf:rest N286acae0084a495cac688e9f1b6bd857
109 N5f09321293604e10894a772ff61a3a51 rdf:first sg:person.016267427345.72
110 rdf:rest N44b1d74aadf74611a66a7106888c4f7d
111 N62479b3123274d34bf32140ff37b6130 schema:familyName Sperduti
112 schema:givenName Alessandro
113 rdf:type schema:Person
114 N766e2759c538433d8135a963fce07aca rdf:first sg:person.015746525501.73
115 rdf:rest rdf:nil
116 N877ce45284014503992b0e6dc5a87af8 schema:name Springer Nature
117 rdf:type schema:Organisation
118 N8b811ddfb0804f3a877538f88db8ac01 schema:name doi
119 schema:value 10.1007/978-3-030-16841-4_22
120 rdf:type schema:PropertyValue
121 N8f53210d469d486db2c3a79f7a057cf8 rdf:first sg:person.07642506703.21
122 rdf:rest N4d640e8de4c04f74938697fb97b002cc
123 N9e018c4ad17947d59f3fb14ccbe2bf1f schema:affiliation grid-institutes:grid.9811.1
124 schema:familyName Buchmueller
125 schema:givenName Juri
126 rdf:type schema:Person
127 Nb4f81fb9a6e54564a1cc57079df0457f rdf:first N3fb882a5ce904f81820aa8c1fa8cc1a3
128 rdf:rest rdf:nil
129 Nc08f3b1d4f7a46a19fc3636f5b96909a rdf:first sg:person.012217352646.41
130 rdf:rest Nf572d64a3f0d4161ab6c1aaaf32ef19c
131 Nc97665b25cf0446e8bd4eeda81233879 schema:isbn 978-3-030-16840-7
132 978-3-030-16841-4
133 schema:name Recent Advances in Big Data and Deep Learning
134 rdf:type schema:Book
135 Nd0a43a0e4675402a841ce53130ef594f rdf:first N2e48e57a224f4385a0db82a882790655
136 rdf:rest N2cc85ba8becb40b09c2730efe5730605
137 Nf15a41c8a7244ae29c545c3dc10edb97 schema:familyName Oneto
138 schema:givenName Luca
139 rdf:type schema:Person
140 Nf572d64a3f0d4161ab6c1aaaf32ef19c rdf:first sg:person.015275326543.95
141 rdf:rest N5f09321293604e10894a772ff61a3a51
142 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
143 schema:name Information and Computing Sciences
144 rdf:type schema:DefinedTerm
145 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
146 schema:name Artificial Intelligence and Image Processing
147 rdf:type schema:DefinedTerm
148 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
149 schema:name Information Systems
150 rdf:type schema:DefinedTerm
151 sg:person.010324047633.88 schema:affiliation grid-institutes:grid.9811.1
152 schema:familyName Jentner
153 schema:givenName Wolfgang
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010324047633.88
155 rdf:type schema:Person
156 sg:person.012217352646.41 schema:affiliation grid-institutes:grid.425169.d
157 schema:familyName Canepa
158 schema:givenName Renzo
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012217352646.41
160 rdf:type schema:Person
161 sg:person.012744737235.02 schema:affiliation grid-institutes:grid.9811.1
162 schema:familyName Cakmak
163 schema:givenName Eren
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012744737235.02
165 rdf:type schema:Person
166 sg:person.014110366071.76 schema:affiliation grid-institutes:grid.9811.1
167 schema:familyName Castiglia
168 schema:givenName Giuliano
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014110366071.76
170 rdf:type schema:Person
171 sg:person.015275326543.95 schema:affiliation grid-institutes:grid.425169.d
172 schema:familyName Petralli
173 schema:givenName Simone
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015275326543.95
175 rdf:type schema:Person
176 sg:person.015746525501.73 schema:affiliation grid-institutes:grid.5606.5
177 schema:familyName Anguita
178 schema:givenName Davide
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015746525501.73
180 rdf:type schema:Person
181 sg:person.016267427345.72 schema:affiliation grid-institutes:grid.5606.5
182 schema:familyName Oneto
183 schema:givenName Luca
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016267427345.72
185 rdf:type schema:Person
186 sg:person.0635776571.01 schema:affiliation grid-institutes:grid.9811.1
187 schema:familyName Keim
188 schema:givenName Daniel A.
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635776571.01
190 rdf:type schema:Person
191 sg:person.07642506703.21 schema:affiliation grid-institutes:grid.9811.1
192 schema:familyName Schlegel
193 schema:givenName Udo
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07642506703.21
195 rdf:type schema:Person
196 grid-institutes:grid.425169.d schema:alternateName Rete Ferroviaria Italiana S.p.A., Rome, Italy
197 schema:name Rete Ferroviaria Italiana S.p.A., Rome, Italy
198 rdf:type schema:Organization
199 grid-institutes:grid.5606.5 schema:alternateName DIBRIS, University of Genoa, Genoa, Italy
200 schema:name DIBRIS, University of Genoa, Genoa, Italy
201 rdf:type schema:Organization
202 grid-institutes:grid.9811.1 schema:alternateName DBVIS, University of Konstanz, Konstanz, Germany
203 schema:name DBVIS, University of Konstanz, Konstanz, Germany
204 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...