A Combined Radio-Histological Approach for Classification of Low Grade Gliomas View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2019-01-26

AUTHORS

Aditya Bagari , Ashish Kumar , Avinash Kori , Mahendra Khened , Ganapathy Krishnamurthi

ABSTRACT

Deep learning based techniques have shown to be beneficial for automating various medical image tasks like segmentation of lesions and automation of disease diagnosis. In this work, we demonstrate the utility of deep learning and radiomics features for classification of low grade gliomas (LGG) into astrocytoma and oligodendroglioma. In this study the objective is to use whole-slide H&E stained images and Magnetic Resonance (MR) images of the brain to make a prediction about the class of the glioma. We treat both the pathology and radiology datasets separately for in-depth analysis and then combine the predictions made by the individual models to get the final class label for a patient. The pre-processing of the whole slide images involved region of interest detection, stain normalization and patch extraction. An autoencoder was trained to extract features from each patch and these features are then used to find anomaly patches among the entire set of patches for a single Whole Slide Image. These anomaly patches from all the training slides form the dataset for training the classification model. A deep neural network based classification model was used to classify individual patches among the two classes. For the radiology dataset based analysis, each MRI scan was fed into a pre-processing pipeline which involved skull-stripping, co-registration of MR sequences to T1c, re-sampling of MR volumes to isotropic voxels and segmentation of brain lesion. The lesions in the MR volumes were automatically segmented using a fully convolutional Neural Network (CNN) trained on BraTS-2018 segmentation challenge dataset. From the segmentation maps 64×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\,\times \,$$\end{document}64×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\,\times \,$$\end{document}64 cube patches centered around the tumor were extracted from the T1 MR images for extraction of high level radiomic features. These features were then used to train a logistic regression classifier. After developing the two models, we used a confidence based prediction methodology to get the final class labels for each patient. This combined approach achieved a classification accuracy of 90% on the challenge test set (n = 20). These results showcase the emerging role of deep learning and radiomics in analyzing whole-slide images and MR scans for lesion characterization. More... »

PAGES

416-427

Book

TITLE

Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries

ISBN

978-3-030-11722-1
978-3-030-11723-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-11723-8_42

DOI

http://dx.doi.org/10.1007/978-3-030-11723-8_42

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111721756


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Madras, 600036, Chennai, India", 
          "id": "http://www.grid.ac/institutes/grid.417969.4", 
          "name": [
            "Indian Institute of Technology Madras, 600036, Chennai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bagari", 
        "givenName": "Aditya", 
        "id": "sg:person.07507664273.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07507664273.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Madras, 600036, Chennai, India", 
          "id": "http://www.grid.ac/institutes/grid.417969.4", 
          "name": [
            "Indian Institute of Technology Madras, 600036, Chennai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kumar", 
        "givenName": "Ashish", 
        "id": "sg:person.011102625273.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011102625273.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Madras, 600036, Chennai, India", 
          "id": "http://www.grid.ac/institutes/grid.417969.4", 
          "name": [
            "Indian Institute of Technology Madras, 600036, Chennai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kori", 
        "givenName": "Avinash", 
        "id": "sg:person.014412245123.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014412245123.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Madras, 600036, Chennai, India", 
          "id": "http://www.grid.ac/institutes/grid.417969.4", 
          "name": [
            "Indian Institute of Technology Madras, 600036, Chennai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khened", 
        "givenName": "Mahendra", 
        "id": "sg:person.07732256514.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07732256514.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Madras, 600036, Chennai, India", 
          "id": "http://www.grid.ac/institutes/grid.417969.4", 
          "name": [
            "Indian Institute of Technology Madras, 600036, Chennai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krishnamurthi", 
        "givenName": "Ganapathy", 
        "id": "sg:person.013774661125.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013774661125.64"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2019-01-26", 
    "datePublishedReg": "2019-01-26", 
    "description": "Deep learning based techniques have shown to be beneficial for automating various medical image tasks like segmentation of lesions and automation of disease diagnosis. In this work, we demonstrate the utility of deep learning and radiomics features for classification of low grade gliomas (LGG) into astrocytoma and oligodendroglioma. In this study the objective is to use whole-slide H&E stained images and Magnetic Resonance (MR) images of the brain\u00a0to make a prediction about the class of the glioma. We treat both the pathology and radiology datasets separately for in-depth analysis and then combine the predictions made by the individual models to get the final class label for a patient. The pre-processing of the whole slide images involved region of interest detection, stain normalization and patch extraction. An autoencoder was trained to extract features from each patch and these features are then used to find anomaly patches among the entire set of patches for a single Whole Slide Image. These anomaly patches from all the training slides form the dataset for training the classification model. A deep neural network based classification model was used to classify individual patches among the two classes. For the radiology dataset based analysis, each MRI scan was fed into a pre-processing pipeline which involved skull-stripping, co-registration of MR sequences to T1c, re-sampling of MR volumes to isotropic voxels and segmentation of brain lesion. The lesions in the MR volumes were automatically segmented using a fully convolutional Neural Network (CNN) trained on BraTS-2018 segmentation challenge dataset. From the segmentation maps 64\u00d7\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\,\\times \\,$$\\end{document}64\u00d7\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\,\\times \\,$$\\end{document}64 cube patches centered around the tumor were extracted from the T1 MR images for extraction of high level radiomic features. These features were then used to train a logistic regression classifier. After developing the two models, we used a confidence based prediction methodology to get the final class labels for each patient. This combined approach achieved a classification accuracy of 90% on the challenge test set (n\u00a0=\u00a020). These results showcase the emerging role of deep learning and radiomics in analyzing whole-slide images and MR scans for lesion characterization.", 
    "editor": [
      {
        "familyName": "Crimi", 
        "givenName": "Alessandro", 
        "type": "Person"
      }, 
      {
        "familyName": "Bakas", 
        "givenName": "Spyridon", 
        "type": "Person"
      }, 
      {
        "familyName": "Kuijf", 
        "givenName": "Hugo", 
        "type": "Person"
      }, 
      {
        "familyName": "Keyvan", 
        "givenName": "Farahani", 
        "type": "Person"
      }, 
      {
        "familyName": "Reyes", 
        "givenName": "Mauricio", 
        "type": "Person"
      }, 
      {
        "familyName": "van Walsum", 
        "givenName": "Theo", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-11723-8_42", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-11722-1", 
        "978-3-030-11723-8"
      ], 
      "name": "Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries", 
      "type": "Book"
    }, 
    "keywords": [
      "whole slide images", 
      "convolutional neural network", 
      "final class label", 
      "deep learning", 
      "class labels", 
      "neural network", 
      "slide images", 
      "classification model", 
      "single whole slide image", 
      "medical image tasks", 
      "deep neural networks", 
      "MR volumes", 
      "segmentation of lesions", 
      "challenge test set", 
      "logistic regression classifier", 
      "pre-processing pipeline", 
      "patch extraction", 
      "interest detection", 
      "challenge dataset", 
      "image tasks", 
      "stain normalization", 
      "segmentation map", 
      "classification accuracy", 
      "regression classifier", 
      "T1 MR images", 
      "dataset", 
      "radiomic features", 
      "test set", 
      "segmentation", 
      "images", 
      "learning", 
      "individual models", 
      "network", 
      "magnetic resonance images", 
      "prediction methodology", 
      "disease diagnosis", 
      "entire set", 
      "classification", 
      "MR images", 
      "autoencoder", 
      "training slides", 
      "labels", 
      "depth analysis", 
      "classifier", 
      "resonance images", 
      "automation", 
      "set", 
      "features", 
      "individual patches", 
      "extraction", 
      "task", 
      "isotropic voxels", 
      "combined approach", 
      "pipeline", 
      "model", 
      "Brat", 
      "accuracy", 
      "prediction", 
      "MR sequences", 
      "voxels", 
      "detection", 
      "methodology", 
      "maps", 
      "class", 
      "MR scans", 
      "technique", 
      "patches", 
      "work", 
      "confidence", 
      "utility", 
      "normalization", 
      "MRI scans", 
      "lesion characterization", 
      "objective", 
      "sequence", 
      "analysis", 
      "results", 
      "scans", 
      "volume", 
      "T1c", 
      "low-grade gliomas", 
      "slides", 
      "anomalies", 
      "grade gliomas", 
      "diagnosis", 
      "brain lesions", 
      "region", 
      "lesions", 
      "gliomas", 
      "role", 
      "study", 
      "patients", 
      "astrocytomas", 
      "brain", 
      "tumors", 
      "pathology", 
      "characterization", 
      "approach", 
      "radiology datasets", 
      "anomaly patches", 
      "segmentation challenge dataset", 
      "cube patches", 
      "high level radiomic features", 
      "level radiomic features", 
      "Combined Radio-Histological Approach", 
      "Radio-Histological Approach"
    ], 
    "name": "A Combined Radio-Histological Approach for Classification of Low Grade Gliomas", 
    "pagination": "416-427", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111721756"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-11723-8_42"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-11723-8_42", 
      "https://app.dimensions.ai/details/publication/pub.1111721756"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_376.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-030-11723-8_42"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-11723-8_42'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-11723-8_42'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-11723-8_42'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-11723-8_42'


 

This table displays all metadata directly associated to this object as RDF triples.

219 TRIPLES      23 PREDICATES      131 URIs      124 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-11723-8_42 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N9171e8ce3f234865b5ffbad5c37bba32
4 schema:datePublished 2019-01-26
5 schema:datePublishedReg 2019-01-26
6 schema:description Deep learning based techniques have shown to be beneficial for automating various medical image tasks like segmentation of lesions and automation of disease diagnosis. In this work, we demonstrate the utility of deep learning and radiomics features for classification of low grade gliomas (LGG) into astrocytoma and oligodendroglioma. In this study the objective is to use whole-slide H&E stained images and Magnetic Resonance (MR) images of the brain to make a prediction about the class of the glioma. We treat both the pathology and radiology datasets separately for in-depth analysis and then combine the predictions made by the individual models to get the final class label for a patient. The pre-processing of the whole slide images involved region of interest detection, stain normalization and patch extraction. An autoencoder was trained to extract features from each patch and these features are then used to find anomaly patches among the entire set of patches for a single Whole Slide Image. These anomaly patches from all the training slides form the dataset for training the classification model. A deep neural network based classification model was used to classify individual patches among the two classes. For the radiology dataset based analysis, each MRI scan was fed into a pre-processing pipeline which involved skull-stripping, co-registration of MR sequences to T1c, re-sampling of MR volumes to isotropic voxels and segmentation of brain lesion. The lesions in the MR volumes were automatically segmented using a fully convolutional Neural Network (CNN) trained on BraTS-2018 segmentation challenge dataset. From the segmentation maps 64×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\,\times \,$$\end{document}64×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\,\times \,$$\end{document}64 cube patches centered around the tumor were extracted from the T1 MR images for extraction of high level radiomic features. These features were then used to train a logistic regression classifier. After developing the two models, we used a confidence based prediction methodology to get the final class labels for each patient. This combined approach achieved a classification accuracy of 90% on the challenge test set (n = 20). These results showcase the emerging role of deep learning and radiomics in analyzing whole-slide images and MR scans for lesion characterization.
7 schema:editor N0cc0733f684c4e12b21ad6746deaa91b
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N896e14b26e4c4dc5961a70cd0a546c18
12 schema:keywords Brat
13 Combined Radio-Histological Approach
14 MR images
15 MR scans
16 MR sequences
17 MR volumes
18 MRI scans
19 Radio-Histological Approach
20 T1 MR images
21 T1c
22 accuracy
23 analysis
24 anomalies
25 anomaly patches
26 approach
27 astrocytomas
28 autoencoder
29 automation
30 brain
31 brain lesions
32 challenge dataset
33 challenge test set
34 characterization
35 class
36 class labels
37 classification
38 classification accuracy
39 classification model
40 classifier
41 combined approach
42 confidence
43 convolutional neural network
44 cube patches
45 dataset
46 deep learning
47 deep neural networks
48 depth analysis
49 detection
50 diagnosis
51 disease diagnosis
52 entire set
53 extraction
54 features
55 final class label
56 gliomas
57 grade gliomas
58 high level radiomic features
59 image tasks
60 images
61 individual models
62 individual patches
63 interest detection
64 isotropic voxels
65 labels
66 learning
67 lesion characterization
68 lesions
69 level radiomic features
70 logistic regression classifier
71 low-grade gliomas
72 magnetic resonance images
73 maps
74 medical image tasks
75 methodology
76 model
77 network
78 neural network
79 normalization
80 objective
81 patch extraction
82 patches
83 pathology
84 patients
85 pipeline
86 pre-processing pipeline
87 prediction
88 prediction methodology
89 radiology datasets
90 radiomic features
91 region
92 regression classifier
93 resonance images
94 results
95 role
96 scans
97 segmentation
98 segmentation challenge dataset
99 segmentation map
100 segmentation of lesions
101 sequence
102 set
103 single whole slide image
104 slide images
105 slides
106 stain normalization
107 study
108 task
109 technique
110 test set
111 training slides
112 tumors
113 utility
114 volume
115 voxels
116 whole slide images
117 work
118 schema:name A Combined Radio-Histological Approach for Classification of Low Grade Gliomas
119 schema:pagination 416-427
120 schema:productId N4caba0052ec74480b4dd86b6a08da3f8
121 Ne18f6631fa5f406783a766b8dc7fcfee
122 schema:publisher Nfbabcb8729174e73b5fb4a30ea97a451
123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111721756
124 https://doi.org/10.1007/978-3-030-11723-8_42
125 schema:sdDatePublished 2022-01-01T19:21
126 schema:sdLicense https://scigraph.springernature.com/explorer/license/
127 schema:sdPublisher N605507a4846644a39e403fe2e644a7fa
128 schema:url https://doi.org/10.1007/978-3-030-11723-8_42
129 sgo:license sg:explorer/license/
130 sgo:sdDataset chapters
131 rdf:type schema:Chapter
132 N02e4d7528d394f4981bad3dd67e93c23 schema:familyName Crimi
133 schema:givenName Alessandro
134 rdf:type schema:Person
135 N0cc0733f684c4e12b21ad6746deaa91b rdf:first N02e4d7528d394f4981bad3dd67e93c23
136 rdf:rest Ncd56a89d814445e59a25d77e8e6f4943
137 N23505a65031c4dbf82d6d857b6c6eec7 schema:familyName Reyes
138 schema:givenName Mauricio
139 rdf:type schema:Person
140 N2f65de6468b9421db948759d036a8b44 schema:familyName Kuijf
141 schema:givenName Hugo
142 rdf:type schema:Person
143 N400cbe0e977648738c5873627b2bb235 schema:familyName Bakas
144 schema:givenName Spyridon
145 rdf:type schema:Person
146 N4229ed6911734831b8731357c1342355 rdf:first N46babf1fd938456eaa11d8db79a48eec
147 rdf:rest rdf:nil
148 N46babf1fd938456eaa11d8db79a48eec schema:familyName van Walsum
149 schema:givenName Theo
150 rdf:type schema:Person
151 N4caba0052ec74480b4dd86b6a08da3f8 schema:name doi
152 schema:value 10.1007/978-3-030-11723-8_42
153 rdf:type schema:PropertyValue
154 N508458f8e8984e65b6f8c6aafae0c516 schema:familyName Keyvan
155 schema:givenName Farahani
156 rdf:type schema:Person
157 N5a9c0559740443ae9128c8c172e1e5e7 rdf:first N2f65de6468b9421db948759d036a8b44
158 rdf:rest Ndfb52964bfd44b72ac3dada647e7ab9f
159 N605507a4846644a39e403fe2e644a7fa schema:name Springer Nature - SN SciGraph project
160 rdf:type schema:Organization
161 N834b1efefcad4100a3b13de0406b178b rdf:first sg:person.07732256514.56
162 rdf:rest Nf4c06e7c7dd2425896128200bb3f9ca6
163 N881f5beb874341fcafa6f3427517ad28 rdf:first N23505a65031c4dbf82d6d857b6c6eec7
164 rdf:rest N4229ed6911734831b8731357c1342355
165 N896e14b26e4c4dc5961a70cd0a546c18 schema:isbn 978-3-030-11722-1
166 978-3-030-11723-8
167 schema:name Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries
168 rdf:type schema:Book
169 N9171e8ce3f234865b5ffbad5c37bba32 rdf:first sg:person.07507664273.80
170 rdf:rest Ne759e4eeb93b4ea1bcac6097d7a0089d
171 N9a7b5c8d6d304e44be3cba76f07d0f4d rdf:first sg:person.014412245123.13
172 rdf:rest N834b1efefcad4100a3b13de0406b178b
173 Ncd56a89d814445e59a25d77e8e6f4943 rdf:first N400cbe0e977648738c5873627b2bb235
174 rdf:rest N5a9c0559740443ae9128c8c172e1e5e7
175 Ndfb52964bfd44b72ac3dada647e7ab9f rdf:first N508458f8e8984e65b6f8c6aafae0c516
176 rdf:rest N881f5beb874341fcafa6f3427517ad28
177 Ne18f6631fa5f406783a766b8dc7fcfee schema:name dimensions_id
178 schema:value pub.1111721756
179 rdf:type schema:PropertyValue
180 Ne759e4eeb93b4ea1bcac6097d7a0089d rdf:first sg:person.011102625273.22
181 rdf:rest N9a7b5c8d6d304e44be3cba76f07d0f4d
182 Nf4c06e7c7dd2425896128200bb3f9ca6 rdf:first sg:person.013774661125.64
183 rdf:rest rdf:nil
184 Nfbabcb8729174e73b5fb4a30ea97a451 schema:name Springer Nature
185 rdf:type schema:Organisation
186 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
187 schema:name Information and Computing Sciences
188 rdf:type schema:DefinedTerm
189 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
190 schema:name Artificial Intelligence and Image Processing
191 rdf:type schema:DefinedTerm
192 sg:person.011102625273.22 schema:affiliation grid-institutes:grid.417969.4
193 schema:familyName Kumar
194 schema:givenName Ashish
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011102625273.22
196 rdf:type schema:Person
197 sg:person.013774661125.64 schema:affiliation grid-institutes:grid.417969.4
198 schema:familyName Krishnamurthi
199 schema:givenName Ganapathy
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013774661125.64
201 rdf:type schema:Person
202 sg:person.014412245123.13 schema:affiliation grid-institutes:grid.417969.4
203 schema:familyName Kori
204 schema:givenName Avinash
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014412245123.13
206 rdf:type schema:Person
207 sg:person.07507664273.80 schema:affiliation grid-institutes:grid.417969.4
208 schema:familyName Bagari
209 schema:givenName Aditya
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07507664273.80
211 rdf:type schema:Person
212 sg:person.07732256514.56 schema:affiliation grid-institutes:grid.417969.4
213 schema:familyName Khened
214 schema:givenName Mahendra
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07732256514.56
216 rdf:type schema:Person
217 grid-institutes:grid.417969.4 schema:alternateName Indian Institute of Technology Madras, 600036, Chennai, India
218 schema:name Indian Institute of Technology Madras, 600036, Chennai, India
219 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...