A Wigner Potential Decomposition in the Signed-Particle Monte Carlo Approach View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2019-01-18

AUTHORS

Majid Benam , Mihail Nedjalkov , Siegfried Selberherr

ABSTRACT

The description of the electron evolution, provided by the Wigner equation, involves a force-less Liouville operator, which is associated with particles moving over Newtonian trajectories, and a Wigner potential operator associated with generation of positive and negative particles. These concepts can be combined to develop stochastic algorithms for solving the Wigner equation, consolidated by the so-called signed particle approach. We investigate the option to split the Wigner potential into two parts and to approximate one of them by a classical force term. The purpose is two-fold: First, we search for ways to simplify the numerical complexity involved in the simulation of the Wigner equation. Second, such a term offers a way to a self-consistent coupling of the Wigner and the Poisson equations. The particles in the signed-particle approach experience a force through the classical component of the potential. A cellular automaton algorithm is used to update the discrete momentum of the accelerated particles, which is then utilized along with the Wigner-based generation/annihilation processes. The effect of the approximation on generic physical quantities such as current and density are investigated for different cut-off wavenumbers (wavelengths), and the results are promising for a self-consistent solution of the Wigner and Poisson equations. More... »

PAGES

263-272

Book

TITLE

Numerical Methods and Applications

ISBN

978-3-030-10691-1
978-3-030-10692-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-10692-8_29

DOI

http://dx.doi.org/10.1007/978-3-030-10692-8_29

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111517495


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Microelectronics, TU Wien, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institute for Microelectronics, TU Wien, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Benam", 
        "givenName": "Majid", 
        "id": "sg:person.016603343713.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016603343713.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Microelectronics, TU Wien, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institute for Microelectronics, TU Wien, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nedjalkov", 
        "givenName": "Mihail", 
        "id": "sg:person.011142023427.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011142023427.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Microelectronics, TU Wien, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institute for Microelectronics, TU Wien, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Selberherr", 
        "givenName": "Siegfried", 
        "id": "sg:person.013033344117.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033344117.92"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2019-01-18", 
    "datePublishedReg": "2019-01-18", 
    "description": "The description of the electron evolution, provided by the Wigner equation, involves a force-less Liouville operator, which is associated with particles moving over Newtonian trajectories, and a Wigner potential operator associated with generation of positive and negative particles. These concepts can be combined to develop stochastic algorithms for solving the Wigner equation, consolidated by the so-called signed particle approach. We investigate the option to split the Wigner potential into two parts and to approximate one of them by a classical force term. The purpose is two-fold: First, we search for ways to simplify the numerical complexity involved in the simulation of the Wigner equation. Second, such a term offers a way to a self-consistent coupling of the Wigner and the Poisson equations. The particles in the signed-particle approach experience a force through the classical component of the potential. A cellular automaton algorithm is used to update the discrete momentum of the accelerated particles, which is then utilized along with the Wigner-based generation/annihilation processes. The effect of the approximation on generic physical quantities such as current and density are investigated for different cut-off wavenumbers (wavelengths), and the results are promising for a self-consistent solution of the Wigner and Poisson equations.", 
    "editor": [
      {
        "familyName": "Nikolov", 
        "givenName": "Geno", 
        "type": "Person"
      }, 
      {
        "familyName": "Kolkovska", 
        "givenName": "Natalia", 
        "type": "Person"
      }, 
      {
        "familyName": "Georgiev", 
        "givenName": "Krassimir", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-10692-8_29", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-10691-1", 
        "978-3-030-10692-8"
      ], 
      "name": "Numerical Methods and Applications", 
      "type": "Book"
    }, 
    "keywords": [
      "Wigner equation", 
      "Poisson equation", 
      "self-consistent solution", 
      "self-consistent coupling", 
      "Monte Carlo approach", 
      "Liouville operator", 
      "Newtonian trajectories", 
      "discrete momentum", 
      "stochastic algorithm", 
      "Wigner potential", 
      "numerical complexity", 
      "potential operators", 
      "force term", 
      "Carlo approach", 
      "physical quantities", 
      "equations", 
      "electron evolution", 
      "Wigner", 
      "particle approach", 
      "cellular automata algorithm", 
      "classical components", 
      "operators", 
      "automata algorithm", 
      "potential decomposition", 
      "annihilation process", 
      "algorithm", 
      "approximation", 
      "negative particles", 
      "momentum", 
      "wavenumbers", 
      "approach", 
      "terms", 
      "simulations", 
      "trajectories", 
      "particles", 
      "solution", 
      "coupling", 
      "complexity", 
      "description", 
      "decomposition", 
      "quantity", 
      "force", 
      "way", 
      "density", 
      "evolution", 
      "two-fold", 
      "concept", 
      "results", 
      "potential", 
      "generation", 
      "process", 
      "components", 
      "part", 
      "purpose", 
      "effect", 
      "options"
    ], 
    "name": "A Wigner Potential Decomposition in the Signed-Particle Monte Carlo Approach", 
    "pagination": "263-272", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111517495"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-10692-8_29"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-10692-8_29", 
      "https://app.dimensions.ai/details/publication/pub.1111517495"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-10T10:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_369.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-030-10692-8_29"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-10692-8_29'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-10692-8_29'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-10692-8_29'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-10692-8_29'


 

This table displays all metadata directly associated to this object as RDF triples.

140 TRIPLES      23 PREDICATES      81 URIs      74 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-10692-8_29 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author Nc844b455325e4410b9412647cad5fcf1
4 schema:datePublished 2019-01-18
5 schema:datePublishedReg 2019-01-18
6 schema:description The description of the electron evolution, provided by the Wigner equation, involves a force-less Liouville operator, which is associated with particles moving over Newtonian trajectories, and a Wigner potential operator associated with generation of positive and negative particles. These concepts can be combined to develop stochastic algorithms for solving the Wigner equation, consolidated by the so-called signed particle approach. We investigate the option to split the Wigner potential into two parts and to approximate one of them by a classical force term. The purpose is two-fold: First, we search for ways to simplify the numerical complexity involved in the simulation of the Wigner equation. Second, such a term offers a way to a self-consistent coupling of the Wigner and the Poisson equations. The particles in the signed-particle approach experience a force through the classical component of the potential. A cellular automaton algorithm is used to update the discrete momentum of the accelerated particles, which is then utilized along with the Wigner-based generation/annihilation processes. The effect of the approximation on generic physical quantities such as current and density are investigated for different cut-off wavenumbers (wavelengths), and the results are promising for a self-consistent solution of the Wigner and Poisson equations.
7 schema:editor Nf013b6f2cb344712ae23bd4109f655f6
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N006156e7ee094b9aab07e37c479abf56
12 schema:keywords Carlo approach
13 Liouville operator
14 Monte Carlo approach
15 Newtonian trajectories
16 Poisson equation
17 Wigner
18 Wigner equation
19 Wigner potential
20 algorithm
21 annihilation process
22 approach
23 approximation
24 automata algorithm
25 cellular automata algorithm
26 classical components
27 complexity
28 components
29 concept
30 coupling
31 decomposition
32 density
33 description
34 discrete momentum
35 effect
36 electron evolution
37 equations
38 evolution
39 force
40 force term
41 generation
42 momentum
43 negative particles
44 numerical complexity
45 operators
46 options
47 part
48 particle approach
49 particles
50 physical quantities
51 potential
52 potential decomposition
53 potential operators
54 process
55 purpose
56 quantity
57 results
58 self-consistent coupling
59 self-consistent solution
60 simulations
61 solution
62 stochastic algorithm
63 terms
64 trajectories
65 two-fold
66 wavenumbers
67 way
68 schema:name A Wigner Potential Decomposition in the Signed-Particle Monte Carlo Approach
69 schema:pagination 263-272
70 schema:productId N691a6f840ca24f54a9e29c29e1641ebe
71 Nbf25301336dd4187b95b16dc3f6445ac
72 schema:publisher N8b2e74db305e4873a7051d0dccfd3c23
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111517495
74 https://doi.org/10.1007/978-3-030-10692-8_29
75 schema:sdDatePublished 2022-05-10T10:49
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher N7374bb9065fe47a298eb0147cdc39d1e
78 schema:url https://doi.org/10.1007/978-3-030-10692-8_29
79 sgo:license sg:explorer/license/
80 sgo:sdDataset chapters
81 rdf:type schema:Chapter
82 N006156e7ee094b9aab07e37c479abf56 schema:isbn 978-3-030-10691-1
83 978-3-030-10692-8
84 schema:name Numerical Methods and Applications
85 rdf:type schema:Book
86 N0ec41abfdcd4463a8db39c3f783d2b30 schema:familyName Nikolov
87 schema:givenName Geno
88 rdf:type schema:Person
89 N28d959382ef140c7a97d54c5667baf40 schema:familyName Georgiev
90 schema:givenName Krassimir
91 rdf:type schema:Person
92 N691a6f840ca24f54a9e29c29e1641ebe schema:name dimensions_id
93 schema:value pub.1111517495
94 rdf:type schema:PropertyValue
95 N7374bb9065fe47a298eb0147cdc39d1e schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 N8326428adf5642aa9b1a000b4f169ecf rdf:first sg:person.013033344117.92
98 rdf:rest rdf:nil
99 N8a42183e2b0a4e78a7e6321bf6a43aad schema:familyName Kolkovska
100 schema:givenName Natalia
101 rdf:type schema:Person
102 N8b2e74db305e4873a7051d0dccfd3c23 schema:name Springer Nature
103 rdf:type schema:Organisation
104 N8d7c43818ab140bbad95bf09015c40d8 rdf:first N28d959382ef140c7a97d54c5667baf40
105 rdf:rest rdf:nil
106 Nbf25301336dd4187b95b16dc3f6445ac schema:name doi
107 schema:value 10.1007/978-3-030-10692-8_29
108 rdf:type schema:PropertyValue
109 Nc844b455325e4410b9412647cad5fcf1 rdf:first sg:person.016603343713.03
110 rdf:rest Nec28292230c44b368fbbd2985573679a
111 Nec28292230c44b368fbbd2985573679a rdf:first sg:person.011142023427.48
112 rdf:rest N8326428adf5642aa9b1a000b4f169ecf
113 Nf013b6f2cb344712ae23bd4109f655f6 rdf:first N0ec41abfdcd4463a8db39c3f783d2b30
114 rdf:rest Nf38a07e97d8a4bfaba9d83ec92ab33f2
115 Nf38a07e97d8a4bfaba9d83ec92ab33f2 rdf:first N8a42183e2b0a4e78a7e6321bf6a43aad
116 rdf:rest N8d7c43818ab140bbad95bf09015c40d8
117 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
118 schema:name Mathematical Sciences
119 rdf:type schema:DefinedTerm
120 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
121 schema:name Numerical and Computational Mathematics
122 rdf:type schema:DefinedTerm
123 sg:person.011142023427.48 schema:affiliation grid-institutes:grid.5329.d
124 schema:familyName Nedjalkov
125 schema:givenName Mihail
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011142023427.48
127 rdf:type schema:Person
128 sg:person.013033344117.92 schema:affiliation grid-institutes:grid.5329.d
129 schema:familyName Selberherr
130 schema:givenName Siegfried
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033344117.92
132 rdf:type schema:Person
133 sg:person.016603343713.03 schema:affiliation grid-institutes:grid.5329.d
134 schema:familyName Benam
135 schema:givenName Majid
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016603343713.03
137 rdf:type schema:Person
138 grid-institutes:grid.5329.d schema:alternateName Institute for Microelectronics, TU Wien, Vienna, Austria
139 schema:name Institute for Microelectronics, TU Wien, Vienna, Austria
140 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...