Ontology type: schema:Chapter
2019-01-18
AUTHORSVladimir Myasnichenko , Nickolay Sdobnyakov , Leoneed Kirilov , Rossen Mikhov , Stefka Fidanova
ABSTRACTIn this paper we present a method for optimizing of metal nanoparticle structures. The core of the method is a lattice Monte-Carlo method with different lattices combined with an approach from molecular dynamics. Interaction between atoms is calculated using multi-particle tight-binding potential of Gupta – Cleri&Rosato. The method allows solving of problems with periodic boundary conditions. It can be used for modeling of one-dimensional (nanowire, tube) and two-dimensional (nano-film) structures. If periodic boundary conditions are not given, we assume finite dimensions of the model lattice. In addition, automatic relaxation of the crystal lattice can be performed in order to minimize further the potential energy of the system. Both stretching and compressing of the lattice is permitted. A computer implementation of the method is developed. It allows easy and efficient operation. It uses the commonly accepted XYZ format for describing metal nanoparticles. The parameters of the method, such as number and type of metal atoms, temperature of the system, etc. are entered on a separate command line. The method is tested extensively on a large set of examples. More... »
PAGES133-141
Numerical Methods and Applications
ISBN
978-3-030-10691-1
978-3-030-10692-8
http://scigraph.springernature.com/pub.10.1007/978-3-030-10692-8_15
DOIhttp://dx.doi.org/10.1007/978-3-030-10692-8_15
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1111517480
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Chemistry (incl. Structural)",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Tver State University, Tver, Russia",
"id": "http://www.grid.ac/institutes/grid.438242.b",
"name": [
"Tver State University, Tver, Russia"
],
"type": "Organization"
},
"familyName": "Myasnichenko",
"givenName": "Vladimir",
"id": "sg:person.013562762060.25",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013562762060.25"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Tver State University, Tver, Russia",
"id": "http://www.grid.ac/institutes/grid.438242.b",
"name": [
"Tver State University, Tver, Russia"
],
"type": "Organization"
},
"familyName": "Sdobnyakov",
"givenName": "Nickolay",
"id": "sg:person.010244167706.80",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010244167706.80"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Sofia, Bulgaria",
"id": "http://www.grid.ac/institutes/grid.424988.b",
"name": [
"Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Sofia, Bulgaria"
],
"type": "Organization"
},
"familyName": "Kirilov",
"givenName": "Leoneed",
"id": "sg:person.015700215743.52",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015700215743.52"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Sofia, Bulgaria",
"id": "http://www.grid.ac/institutes/grid.424988.b",
"name": [
"Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Sofia, Bulgaria"
],
"type": "Organization"
},
"familyName": "Mikhov",
"givenName": "Rossen",
"id": "sg:person.014434131110.58",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014434131110.58"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Sofia, Bulgaria",
"id": "http://www.grid.ac/institutes/grid.424988.b",
"name": [
"Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Sofia, Bulgaria"
],
"type": "Organization"
},
"familyName": "Fidanova",
"givenName": "Stefka",
"id": "sg:person.011173106320.18",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173106320.18"
],
"type": "Person"
}
],
"datePublished": "2019-01-18",
"datePublishedReg": "2019-01-18",
"description": "Abstract\nIn this paper we present a method for optimizing of metal nanoparticle structures. The core of the method is a lattice Monte-Carlo method with different lattices combined with an approach from molecular dynamics. Interaction between atoms is calculated using multi-particle tight-binding potential of Gupta \u2013 Cleri&Rosato. The method allows solving of problems with periodic boundary conditions. It can be used for modeling of one-dimensional (nanowire, tube) and two-dimensional (nano-film) structures. If periodic boundary conditions are not given, we assume finite dimensions of the model lattice. In addition, automatic relaxation of the crystal lattice can be performed in order to minimize further the potential energy of the system. Both stretching and compressing of the lattice is permitted. A computer implementation of the method is developed. It allows easy and efficient operation. It uses the commonly accepted XYZ format for describing metal nanoparticles. The parameters of the method, such as number and type of metal atoms, temperature of the system, etc. are entered on a separate command line. The method is tested extensively on a large set of examples.",
"editor": [
{
"familyName": "Nikolov",
"givenName": "Geno",
"type": "Person"
},
{
"familyName": "Kolkovska",
"givenName": "Natalia",
"type": "Person"
},
{
"familyName": "Georgiev",
"givenName": "Krassimir",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-030-10692-8_15",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-030-10691-1",
"978-3-030-10692-8"
],
"name": "Numerical Methods and Applications",
"type": "Book"
},
"keywords": [
"periodic boundary conditions",
"boundary conditions",
"Monte Carlo method",
"Monte Carlo approach",
"finite dimensions",
"lattice Monte Carlo method",
"computer implementation",
"Carlo approach",
"different lattices",
"automatic relaxation",
"model lattice",
"solving of problems",
"lattice",
"two-dimensional structure",
"potential energy",
"metal nanoparticle structures",
"large set",
"crystal lattice",
"modeling",
"efficient operation",
"molecular dynamics",
"atoms",
"optimization",
"command line",
"dynamics",
"Gupta",
"solving",
"problem",
"approach",
"system",
"XYZ format",
"parameters",
"structure",
"set",
"binding potential",
"optimizing",
"relaxation",
"dimensions",
"metal atoms",
"conditions",
"energy",
"nanoparticle structure",
"order",
"nanostructures",
"number",
"implementation",
"operation",
"temperature",
"core",
"lines",
"bimetallic nanostructures",
"interaction",
"compressing",
"types",
"potential",
"addition",
"format",
"metal nanoparticles",
"nanoparticles",
"method",
"example",
"paper"
],
"name": "Monte Carlo Approach for Modeling and Optimization of One-Dimensional Bimetallic Nanostructures",
"pagination": "133-141",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1111517480"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-030-10692-8_15"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-030-10692-8_15",
"https://app.dimensions.ai/details/publication/pub.1111517480"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-10T10:57",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_95.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-030-10692-8_15"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-10692-8_15'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-10692-8_15'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-10692-8_15'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-10692-8_15'
This table displays all metadata directly associated to this object as RDF triples.
163 TRIPLES
23 PREDICATES
87 URIs
80 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-030-10692-8_15 | schema:about | anzsrc-for:03 |
2 | ″ | ″ | anzsrc-for:0306 |
3 | ″ | schema:author | Nae6bdd7a94c94c83b26005360c516a8e |
4 | ″ | schema:datePublished | 2019-01-18 |
5 | ″ | schema:datePublishedReg | 2019-01-18 |
6 | ″ | schema:description | Abstract In this paper we present a method for optimizing of metal nanoparticle structures. The core of the method is a lattice Monte-Carlo method with different lattices combined with an approach from molecular dynamics. Interaction between atoms is calculated using multi-particle tight-binding potential of Gupta – Cleri&Rosato. The method allows solving of problems with periodic boundary conditions. It can be used for modeling of one-dimensional (nanowire, tube) and two-dimensional (nano-film) structures. If periodic boundary conditions are not given, we assume finite dimensions of the model lattice. In addition, automatic relaxation of the crystal lattice can be performed in order to minimize further the potential energy of the system. Both stretching and compressing of the lattice is permitted. A computer implementation of the method is developed. It allows easy and efficient operation. It uses the commonly accepted XYZ format for describing metal nanoparticles. The parameters of the method, such as number and type of metal atoms, temperature of the system, etc. are entered on a separate command line. The method is tested extensively on a large set of examples. |
7 | ″ | schema:editor | N5da53120bd224004a839cf10e2667772 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N9047d06cfd484dfd95a91387250b79cc |
12 | ″ | schema:keywords | Carlo approach |
13 | ″ | ″ | Gupta |
14 | ″ | ″ | Monte Carlo approach |
15 | ″ | ″ | Monte Carlo method |
16 | ″ | ″ | XYZ format |
17 | ″ | ″ | addition |
18 | ″ | ″ | approach |
19 | ″ | ″ | atoms |
20 | ″ | ″ | automatic relaxation |
21 | ″ | ″ | bimetallic nanostructures |
22 | ″ | ″ | binding potential |
23 | ″ | ″ | boundary conditions |
24 | ″ | ″ | command line |
25 | ″ | ″ | compressing |
26 | ″ | ″ | computer implementation |
27 | ″ | ″ | conditions |
28 | ″ | ″ | core |
29 | ″ | ″ | crystal lattice |
30 | ″ | ″ | different lattices |
31 | ″ | ″ | dimensions |
32 | ″ | ″ | dynamics |
33 | ″ | ″ | efficient operation |
34 | ″ | ″ | energy |
35 | ″ | ″ | example |
36 | ″ | ″ | finite dimensions |
37 | ″ | ″ | format |
38 | ″ | ″ | implementation |
39 | ″ | ″ | interaction |
40 | ″ | ″ | large set |
41 | ″ | ″ | lattice |
42 | ″ | ″ | lattice Monte Carlo method |
43 | ″ | ″ | lines |
44 | ″ | ″ | metal atoms |
45 | ″ | ″ | metal nanoparticle structures |
46 | ″ | ″ | metal nanoparticles |
47 | ″ | ″ | method |
48 | ″ | ″ | model lattice |
49 | ″ | ″ | modeling |
50 | ″ | ″ | molecular dynamics |
51 | ″ | ″ | nanoparticle structure |
52 | ″ | ″ | nanoparticles |
53 | ″ | ″ | nanostructures |
54 | ″ | ″ | number |
55 | ″ | ″ | operation |
56 | ″ | ″ | optimization |
57 | ″ | ″ | optimizing |
58 | ″ | ″ | order |
59 | ″ | ″ | paper |
60 | ″ | ″ | parameters |
61 | ″ | ″ | periodic boundary conditions |
62 | ″ | ″ | potential |
63 | ″ | ″ | potential energy |
64 | ″ | ″ | problem |
65 | ″ | ″ | relaxation |
66 | ″ | ″ | set |
67 | ″ | ″ | solving |
68 | ″ | ″ | solving of problems |
69 | ″ | ″ | structure |
70 | ″ | ″ | system |
71 | ″ | ″ | temperature |
72 | ″ | ″ | two-dimensional structure |
73 | ″ | ″ | types |
74 | ″ | schema:name | Monte Carlo Approach for Modeling and Optimization of One-Dimensional Bimetallic Nanostructures |
75 | ″ | schema:pagination | 133-141 |
76 | ″ | schema:productId | N27d0685cc7d3456db5a8cda190999041 |
77 | ″ | ″ | N6152ef0f90194df1ba2224f838380b4f |
78 | ″ | schema:publisher | N8ac8a8adbce443af8daf29471b2f4c01 |
79 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1111517480 |
80 | ″ | ″ | https://doi.org/10.1007/978-3-030-10692-8_15 |
81 | ″ | schema:sdDatePublished | 2022-05-10T10:57 |
82 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
83 | ″ | schema:sdPublisher | N86249e2989a2470880ad65e98b4c84bd |
84 | ″ | schema:url | https://doi.org/10.1007/978-3-030-10692-8_15 |
85 | ″ | sgo:license | sg:explorer/license/ |
86 | ″ | sgo:sdDataset | chapters |
87 | ″ | rdf:type | schema:Chapter |
88 | N057ce80187f3442886dc3ea131902f4e | rdf:first | Ncb3d486800d246f98d09d330c6274491 |
89 | ″ | rdf:rest | N4477a22c6cf64ee08d8fc82019bee534 |
90 | N27d0685cc7d3456db5a8cda190999041 | schema:name | doi |
91 | ″ | schema:value | 10.1007/978-3-030-10692-8_15 |
92 | ″ | rdf:type | schema:PropertyValue |
93 | N3ac125919d334fcf80a85909155cecdc | rdf:first | sg:person.011173106320.18 |
94 | ″ | rdf:rest | rdf:nil |
95 | N4477a22c6cf64ee08d8fc82019bee534 | rdf:first | Nfa68c42c330b4661aa13a9f3c3022fd1 |
96 | ″ | rdf:rest | rdf:nil |
97 | N5b300000841149daa376c33b774c4663 | schema:familyName | Nikolov |
98 | ″ | schema:givenName | Geno |
99 | ″ | rdf:type | schema:Person |
100 | N5da53120bd224004a839cf10e2667772 | rdf:first | N5b300000841149daa376c33b774c4663 |
101 | ″ | rdf:rest | N057ce80187f3442886dc3ea131902f4e |
102 | N6152ef0f90194df1ba2224f838380b4f | schema:name | dimensions_id |
103 | ″ | schema:value | pub.1111517480 |
104 | ″ | rdf:type | schema:PropertyValue |
105 | N626fed9e7a674d6bb86e51df0b79f800 | rdf:first | sg:person.010244167706.80 |
106 | ″ | rdf:rest | N8f3bdffa9fba40a09dc2af8e234e718e |
107 | N86249e2989a2470880ad65e98b4c84bd | schema:name | Springer Nature - SN SciGraph project |
108 | ″ | rdf:type | schema:Organization |
109 | N8ac8a8adbce443af8daf29471b2f4c01 | schema:name | Springer Nature |
110 | ″ | rdf:type | schema:Organisation |
111 | N8f3bdffa9fba40a09dc2af8e234e718e | rdf:first | sg:person.015700215743.52 |
112 | ″ | rdf:rest | Nc8e0d42ecb9d4348b4e7d3d848ee2076 |
113 | N9047d06cfd484dfd95a91387250b79cc | schema:isbn | 978-3-030-10691-1 |
114 | ″ | ″ | 978-3-030-10692-8 |
115 | ″ | schema:name | Numerical Methods and Applications |
116 | ″ | rdf:type | schema:Book |
117 | Nae6bdd7a94c94c83b26005360c516a8e | rdf:first | sg:person.013562762060.25 |
118 | ″ | rdf:rest | N626fed9e7a674d6bb86e51df0b79f800 |
119 | Nc8e0d42ecb9d4348b4e7d3d848ee2076 | rdf:first | sg:person.014434131110.58 |
120 | ″ | rdf:rest | N3ac125919d334fcf80a85909155cecdc |
121 | Ncb3d486800d246f98d09d330c6274491 | schema:familyName | Kolkovska |
122 | ″ | schema:givenName | Natalia |
123 | ″ | rdf:type | schema:Person |
124 | Nfa68c42c330b4661aa13a9f3c3022fd1 | schema:familyName | Georgiev |
125 | ″ | schema:givenName | Krassimir |
126 | ″ | rdf:type | schema:Person |
127 | anzsrc-for:03 | schema:inDefinedTermSet | anzsrc-for: |
128 | ″ | schema:name | Chemical Sciences |
129 | ″ | rdf:type | schema:DefinedTerm |
130 | anzsrc-for:0306 | schema:inDefinedTermSet | anzsrc-for: |
131 | ″ | schema:name | Physical Chemistry (incl. Structural) |
132 | ″ | rdf:type | schema:DefinedTerm |
133 | sg:person.010244167706.80 | schema:affiliation | grid-institutes:grid.438242.b |
134 | ″ | schema:familyName | Sdobnyakov |
135 | ″ | schema:givenName | Nickolay |
136 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010244167706.80 |
137 | ″ | rdf:type | schema:Person |
138 | sg:person.011173106320.18 | schema:affiliation | grid-institutes:grid.424988.b |
139 | ″ | schema:familyName | Fidanova |
140 | ″ | schema:givenName | Stefka |
141 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173106320.18 |
142 | ″ | rdf:type | schema:Person |
143 | sg:person.013562762060.25 | schema:affiliation | grid-institutes:grid.438242.b |
144 | ″ | schema:familyName | Myasnichenko |
145 | ″ | schema:givenName | Vladimir |
146 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013562762060.25 |
147 | ″ | rdf:type | schema:Person |
148 | sg:person.014434131110.58 | schema:affiliation | grid-institutes:grid.424988.b |
149 | ″ | schema:familyName | Mikhov |
150 | ″ | schema:givenName | Rossen |
151 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014434131110.58 |
152 | ″ | rdf:type | schema:Person |
153 | sg:person.015700215743.52 | schema:affiliation | grid-institutes:grid.424988.b |
154 | ″ | schema:familyName | Kirilov |
155 | ″ | schema:givenName | Leoneed |
156 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015700215743.52 |
157 | ″ | rdf:type | schema:Person |
158 | grid-institutes:grid.424988.b | schema:alternateName | Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Sofia, Bulgaria |
159 | ″ | schema:name | Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Sofia, Bulgaria |
160 | ″ | rdf:type | schema:Organization |
161 | grid-institutes:grid.438242.b | schema:alternateName | Tver State University, Tver, Russia |
162 | ″ | schema:name | Tver State University, Tver, Russia |
163 | ″ | rdf:type | schema:Organization |