InterCriteria Analysis of Different Variants of ACO Algorithm for Wireless Sensor Network Positioning View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2019-01-18

AUTHORS

Stefka Fidanova , Olympia Roeva

ABSTRACT

Wireless sensor networks are formed by spatially distributed sensors, which communicate in a wireless way. This network can monitor various kinds of environment and physical conditions like movement, noise, light, humidity, images, chemical substances etc. A given area needs to be fully covered with minimal number of sensors and the energy consumption of the network needs to be minimal too. We propose several algorithms, based on Ant Colony Optimization, to solve the problem. We study the algorithms behaviour when the number of ants varies from 1 to 10. We apply InterCriteria analysis to study relations between proposed algorithms and number of ants and analyse correlation between them. More... »

PAGES

88-96

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-10692-8_10

DOI

http://dx.doi.org/10.1007/978-3-030-10692-8_10

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111517475


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1005", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Communications Technologies", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Information and Communication Technologies \u2013 BAS, Acad. G. Bonchev Str., bl. 25A, 1113, Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute of Information and Communication Technologies \u2013 BAS, Acad. G. Bonchev Str., bl. 25A, 1113, Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fidanova", 
        "givenName": "Stefka", 
        "id": "sg:person.011173106320.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173106320.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Biophysics and Biomedical Engineering \u2013 BAS, Acad. G. Bonchev Str., bl. 105, 1113, Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute of Biophysics and Biomedical Engineering \u2013 BAS, Acad. G. Bonchev Str., bl. 105, 1113, Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roeva", 
        "givenName": "Olympia", 
        "id": "sg:person.015745057111.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015745057111.08"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2019-01-18", 
    "datePublishedReg": "2019-01-18", 
    "description": "Wireless sensor networks are formed by spatially distributed sensors, which communicate in a wireless way. This network can monitor various kinds of environment and physical conditions like movement, noise, light, humidity, images, chemical substances etc. A given area needs to be fully covered with minimal number of sensors and the energy consumption of the network needs to be minimal too. We propose several algorithms, based on Ant Colony Optimization, to solve the problem. We study the algorithms behaviour when the number of ants varies from 1 to 10. We apply InterCriteria analysis to study relations between proposed algorithms and number of ants and analyse correlation between them.", 
    "editor": [
      {
        "familyName": "Nikolov", 
        "givenName": "Geno", 
        "type": "Person"
      }, 
      {
        "familyName": "Kolkovska", 
        "givenName": "Natalia", 
        "type": "Person"
      }, 
      {
        "familyName": "Georgiev", 
        "givenName": "Krassimir", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-10692-8_10", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-10691-1", 
        "978-3-030-10692-8"
      ], 
      "name": "Numerical Methods and Applications", 
      "type": "Book"
    }, 
    "keywords": [
      "wireless sensor networks", 
      "wireless sensor network positioning", 
      "wireless way", 
      "sensor networks", 
      "Ant Colony Optimization", 
      "kind of environment", 
      "InterCriteria Analysis", 
      "energy consumption", 
      "colony optimization", 
      "ACO algorithm", 
      "algorithm behavior", 
      "network positioning", 
      "algorithm", 
      "network", 
      "sensors", 
      "number of ants", 
      "different variants", 
      "minimal number", 
      "images", 
      "optimization", 
      "environment", 
      "consumption", 
      "light", 
      "number", 
      "noise", 
      "chemical substances", 
      "ants", 
      "analyse correlation", 
      "kind", 
      "way", 
      "humidity", 
      "positioning", 
      "area", 
      "physical conditions", 
      "analysis", 
      "variants", 
      "conditions", 
      "movement", 
      "problem", 
      "behavior", 
      "substances", 
      "relation", 
      "correlation"
    ], 
    "name": "InterCriteria Analysis of Different Variants of ACO Algorithm for Wireless Sensor Network Positioning", 
    "pagination": "88-96", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111517475"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-10692-8_10"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-10692-8_10", 
      "https://app.dimensions.ai/details/publication/pub.1111517475"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_385.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-030-10692-8_10"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-10692-8_10'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-10692-8_10'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-10692-8_10'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-10692-8_10'


 

This table displays all metadata directly associated to this object as RDF triples.

122 TRIPLES      23 PREDICATES      68 URIs      61 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-10692-8_10 schema:about anzsrc-for:10
2 anzsrc-for:1005
3 schema:author N1c3a5c67de4047ddb2ee37b474dfc689
4 schema:datePublished 2019-01-18
5 schema:datePublishedReg 2019-01-18
6 schema:description Wireless sensor networks are formed by spatially distributed sensors, which communicate in a wireless way. This network can monitor various kinds of environment and physical conditions like movement, noise, light, humidity, images, chemical substances etc. A given area needs to be fully covered with minimal number of sensors and the energy consumption of the network needs to be minimal too. We propose several algorithms, based on Ant Colony Optimization, to solve the problem. We study the algorithms behaviour when the number of ants varies from 1 to 10. We apply InterCriteria analysis to study relations between proposed algorithms and number of ants and analyse correlation between them.
7 schema:editor N44888d5c47104c3f9ec2cba9205e1da7
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N616aa1cea45246c5832167a2198c3ef0
12 schema:keywords ACO algorithm
13 Ant Colony Optimization
14 InterCriteria Analysis
15 algorithm
16 algorithm behavior
17 analyse correlation
18 analysis
19 ants
20 area
21 behavior
22 chemical substances
23 colony optimization
24 conditions
25 consumption
26 correlation
27 different variants
28 energy consumption
29 environment
30 humidity
31 images
32 kind
33 kind of environment
34 light
35 minimal number
36 movement
37 network
38 network positioning
39 noise
40 number
41 number of ants
42 optimization
43 physical conditions
44 positioning
45 problem
46 relation
47 sensor networks
48 sensors
49 substances
50 variants
51 way
52 wireless sensor network positioning
53 wireless sensor networks
54 wireless way
55 schema:name InterCriteria Analysis of Different Variants of ACO Algorithm for Wireless Sensor Network Positioning
56 schema:pagination 88-96
57 schema:productId N41fe5b7073de4f6ea1c11d58c4e002b3
58 N4f6c83d6356047d6abaafa05417b65d8
59 schema:publisher N27f8e544b34d487c9a7f84837fce6eef
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111517475
61 https://doi.org/10.1007/978-3-030-10692-8_10
62 schema:sdDatePublished 2022-05-20T07:47
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N034681a9bf364baf9d508006d184faac
65 schema:url https://doi.org/10.1007/978-3-030-10692-8_10
66 sgo:license sg:explorer/license/
67 sgo:sdDataset chapters
68 rdf:type schema:Chapter
69 N01b44a39d52a4a2e9b1e10f0cc390ef1 schema:familyName Kolkovska
70 schema:givenName Natalia
71 rdf:type schema:Person
72 N034681a9bf364baf9d508006d184faac schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N1c3a5c67de4047ddb2ee37b474dfc689 rdf:first sg:person.011173106320.18
75 rdf:rest Ncccf0025350f458ea09e5d19faca304b
76 N27f8e544b34d487c9a7f84837fce6eef schema:name Springer Nature
77 rdf:type schema:Organisation
78 N41fe5b7073de4f6ea1c11d58c4e002b3 schema:name doi
79 schema:value 10.1007/978-3-030-10692-8_10
80 rdf:type schema:PropertyValue
81 N44888d5c47104c3f9ec2cba9205e1da7 rdf:first Nf4a6ed0232044c3e85697fb155e93a95
82 rdf:rest Nc65f9534dfcb476c87f8b6eaeb76c7cc
83 N4f6c83d6356047d6abaafa05417b65d8 schema:name dimensions_id
84 schema:value pub.1111517475
85 rdf:type schema:PropertyValue
86 N616aa1cea45246c5832167a2198c3ef0 schema:isbn 978-3-030-10691-1
87 978-3-030-10692-8
88 schema:name Numerical Methods and Applications
89 rdf:type schema:Book
90 N7c71c3ded5684257a102b08ba1f6a173 schema:familyName Georgiev
91 schema:givenName Krassimir
92 rdf:type schema:Person
93 Nbf02a09fea4644d6aac41cb5661089b4 rdf:first N7c71c3ded5684257a102b08ba1f6a173
94 rdf:rest rdf:nil
95 Nc65f9534dfcb476c87f8b6eaeb76c7cc rdf:first N01b44a39d52a4a2e9b1e10f0cc390ef1
96 rdf:rest Nbf02a09fea4644d6aac41cb5661089b4
97 Ncccf0025350f458ea09e5d19faca304b rdf:first sg:person.015745057111.08
98 rdf:rest rdf:nil
99 Nf4a6ed0232044c3e85697fb155e93a95 schema:familyName Nikolov
100 schema:givenName Geno
101 rdf:type schema:Person
102 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
103 schema:name Technology
104 rdf:type schema:DefinedTerm
105 anzsrc-for:1005 schema:inDefinedTermSet anzsrc-for:
106 schema:name Communications Technologies
107 rdf:type schema:DefinedTerm
108 sg:person.011173106320.18 schema:affiliation grid-institutes:None
109 schema:familyName Fidanova
110 schema:givenName Stefka
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173106320.18
112 rdf:type schema:Person
113 sg:person.015745057111.08 schema:affiliation grid-institutes:None
114 schema:familyName Roeva
115 schema:givenName Olympia
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015745057111.08
117 rdf:type schema:Person
118 grid-institutes:None schema:alternateName Institute of Biophysics and Biomedical Engineering – BAS, Acad. G. Bonchev Str., bl. 105, 1113, Sofia, Bulgaria
119 Institute of Information and Communication Technologies – BAS, Acad. G. Bonchev Str., bl. 25A, 1113, Sofia, Bulgaria
120 schema:name Institute of Biophysics and Biomedical Engineering – BAS, Acad. G. Bonchev Str., bl. 105, 1113, Sofia, Bulgaria
121 Institute of Information and Communication Technologies – BAS, Acad. G. Bonchev Str., bl. 25A, 1113, Sofia, Bulgaria
122 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...