Ontology type: schema:Chapter
2019-01-18
AUTHORSStefka Fidanova , Olympia Roeva
ABSTRACTWireless sensor networks are formed by spatially distributed sensors, which communicate in a wireless way. This network can monitor various kinds of environment and physical conditions like movement, noise, light, humidity, images, chemical substances etc. A given area needs to be fully covered with minimal number of sensors and the energy consumption of the network needs to be minimal too. We propose several algorithms, based on Ant Colony Optimization, to solve the problem. We study the algorithms behaviour when the number of ants varies from 1 to 10. We apply InterCriteria analysis to study relations between proposed algorithms and number of ants and analyse correlation between them. More... »
PAGES88-96
Numerical Methods and Applications
ISBN
978-3-030-10691-1
978-3-030-10692-8
http://scigraph.springernature.com/pub.10.1007/978-3-030-10692-8_10
DOIhttp://dx.doi.org/10.1007/978-3-030-10692-8_10
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1111517475
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Technology",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1005",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Communications Technologies",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute of Information and Communication Technologies \u2013 BAS, Acad. G. Bonchev Str., bl. 25A, 1113, Sofia, Bulgaria",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Institute of Information and Communication Technologies \u2013 BAS, Acad. G. Bonchev Str., bl. 25A, 1113, Sofia, Bulgaria"
],
"type": "Organization"
},
"familyName": "Fidanova",
"givenName": "Stefka",
"id": "sg:person.011173106320.18",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173106320.18"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Biophysics and Biomedical Engineering \u2013 BAS, Acad. G. Bonchev Str., bl. 105, 1113, Sofia, Bulgaria",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Institute of Biophysics and Biomedical Engineering \u2013 BAS, Acad. G. Bonchev Str., bl. 105, 1113, Sofia, Bulgaria"
],
"type": "Organization"
},
"familyName": "Roeva",
"givenName": "Olympia",
"id": "sg:person.015745057111.08",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015745057111.08"
],
"type": "Person"
}
],
"datePublished": "2019-01-18",
"datePublishedReg": "2019-01-18",
"description": "Wireless sensor networks are formed by spatially distributed sensors, which communicate in a wireless way. This network can monitor various kinds of environment and physical conditions like movement, noise, light, humidity, images, chemical substances etc. A given area needs to be fully covered with minimal number of sensors and the energy consumption of the network needs to be minimal too. We propose several algorithms, based on Ant Colony Optimization, to solve the problem. We study the algorithms behaviour when the number of ants varies from 1 to 10. We apply InterCriteria analysis to study relations between proposed algorithms and number of ants and analyse correlation between them.",
"editor": [
{
"familyName": "Nikolov",
"givenName": "Geno",
"type": "Person"
},
{
"familyName": "Kolkovska",
"givenName": "Natalia",
"type": "Person"
},
{
"familyName": "Georgiev",
"givenName": "Krassimir",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-030-10692-8_10",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-030-10691-1",
"978-3-030-10692-8"
],
"name": "Numerical Methods and Applications",
"type": "Book"
},
"keywords": [
"wireless sensor networks",
"wireless sensor network positioning",
"wireless way",
"sensor networks",
"Ant Colony Optimization",
"kind of environment",
"InterCriteria Analysis",
"energy consumption",
"colony optimization",
"ACO algorithm",
"algorithm behavior",
"network positioning",
"algorithm",
"network",
"sensors",
"number of ants",
"different variants",
"minimal number",
"images",
"optimization",
"environment",
"consumption",
"light",
"number",
"noise",
"chemical substances",
"ants",
"analyse correlation",
"kind",
"way",
"humidity",
"positioning",
"area",
"physical conditions",
"analysis",
"variants",
"conditions",
"movement",
"problem",
"behavior",
"substances",
"relation",
"correlation"
],
"name": "InterCriteria Analysis of Different Variants of ACO Algorithm for Wireless Sensor Network Positioning",
"pagination": "88-96",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1111517475"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-030-10692-8_10"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-030-10692-8_10",
"https://app.dimensions.ai/details/publication/pub.1111517475"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:47",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_385.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-030-10692-8_10"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-10692-8_10'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-10692-8_10'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-10692-8_10'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-10692-8_10'
This table displays all metadata directly associated to this object as RDF triples.
122 TRIPLES
23 PREDICATES
68 URIs
61 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-030-10692-8_10 | schema:about | anzsrc-for:10 |
2 | ″ | ″ | anzsrc-for:1005 |
3 | ″ | schema:author | N1c3a5c67de4047ddb2ee37b474dfc689 |
4 | ″ | schema:datePublished | 2019-01-18 |
5 | ″ | schema:datePublishedReg | 2019-01-18 |
6 | ″ | schema:description | Wireless sensor networks are formed by spatially distributed sensors, which communicate in a wireless way. This network can monitor various kinds of environment and physical conditions like movement, noise, light, humidity, images, chemical substances etc. A given area needs to be fully covered with minimal number of sensors and the energy consumption of the network needs to be minimal too. We propose several algorithms, based on Ant Colony Optimization, to solve the problem. We study the algorithms behaviour when the number of ants varies from 1 to 10. We apply InterCriteria analysis to study relations between proposed algorithms and number of ants and analyse correlation between them. |
7 | ″ | schema:editor | N44888d5c47104c3f9ec2cba9205e1da7 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N616aa1cea45246c5832167a2198c3ef0 |
12 | ″ | schema:keywords | ACO algorithm |
13 | ″ | ″ | Ant Colony Optimization |
14 | ″ | ″ | InterCriteria Analysis |
15 | ″ | ″ | algorithm |
16 | ″ | ″ | algorithm behavior |
17 | ″ | ″ | analyse correlation |
18 | ″ | ″ | analysis |
19 | ″ | ″ | ants |
20 | ″ | ″ | area |
21 | ″ | ″ | behavior |
22 | ″ | ″ | chemical substances |
23 | ″ | ″ | colony optimization |
24 | ″ | ″ | conditions |
25 | ″ | ″ | consumption |
26 | ″ | ″ | correlation |
27 | ″ | ″ | different variants |
28 | ″ | ″ | energy consumption |
29 | ″ | ″ | environment |
30 | ″ | ″ | humidity |
31 | ″ | ″ | images |
32 | ″ | ″ | kind |
33 | ″ | ″ | kind of environment |
34 | ″ | ″ | light |
35 | ″ | ″ | minimal number |
36 | ″ | ″ | movement |
37 | ″ | ″ | network |
38 | ″ | ″ | network positioning |
39 | ″ | ″ | noise |
40 | ″ | ″ | number |
41 | ″ | ″ | number of ants |
42 | ″ | ″ | optimization |
43 | ″ | ″ | physical conditions |
44 | ″ | ″ | positioning |
45 | ″ | ″ | problem |
46 | ″ | ″ | relation |
47 | ″ | ″ | sensor networks |
48 | ″ | ″ | sensors |
49 | ″ | ″ | substances |
50 | ″ | ″ | variants |
51 | ″ | ″ | way |
52 | ″ | ″ | wireless sensor network positioning |
53 | ″ | ″ | wireless sensor networks |
54 | ″ | ″ | wireless way |
55 | ″ | schema:name | InterCriteria Analysis of Different Variants of ACO Algorithm for Wireless Sensor Network Positioning |
56 | ″ | schema:pagination | 88-96 |
57 | ″ | schema:productId | N41fe5b7073de4f6ea1c11d58c4e002b3 |
58 | ″ | ″ | N4f6c83d6356047d6abaafa05417b65d8 |
59 | ″ | schema:publisher | N27f8e544b34d487c9a7f84837fce6eef |
60 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1111517475 |
61 | ″ | ″ | https://doi.org/10.1007/978-3-030-10692-8_10 |
62 | ″ | schema:sdDatePublished | 2022-05-20T07:47 |
63 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
64 | ″ | schema:sdPublisher | N034681a9bf364baf9d508006d184faac |
65 | ″ | schema:url | https://doi.org/10.1007/978-3-030-10692-8_10 |
66 | ″ | sgo:license | sg:explorer/license/ |
67 | ″ | sgo:sdDataset | chapters |
68 | ″ | rdf:type | schema:Chapter |
69 | N01b44a39d52a4a2e9b1e10f0cc390ef1 | schema:familyName | Kolkovska |
70 | ″ | schema:givenName | Natalia |
71 | ″ | rdf:type | schema:Person |
72 | N034681a9bf364baf9d508006d184faac | schema:name | Springer Nature - SN SciGraph project |
73 | ″ | rdf:type | schema:Organization |
74 | N1c3a5c67de4047ddb2ee37b474dfc689 | rdf:first | sg:person.011173106320.18 |
75 | ″ | rdf:rest | Ncccf0025350f458ea09e5d19faca304b |
76 | N27f8e544b34d487c9a7f84837fce6eef | schema:name | Springer Nature |
77 | ″ | rdf:type | schema:Organisation |
78 | N41fe5b7073de4f6ea1c11d58c4e002b3 | schema:name | doi |
79 | ″ | schema:value | 10.1007/978-3-030-10692-8_10 |
80 | ″ | rdf:type | schema:PropertyValue |
81 | N44888d5c47104c3f9ec2cba9205e1da7 | rdf:first | Nf4a6ed0232044c3e85697fb155e93a95 |
82 | ″ | rdf:rest | Nc65f9534dfcb476c87f8b6eaeb76c7cc |
83 | N4f6c83d6356047d6abaafa05417b65d8 | schema:name | dimensions_id |
84 | ″ | schema:value | pub.1111517475 |
85 | ″ | rdf:type | schema:PropertyValue |
86 | N616aa1cea45246c5832167a2198c3ef0 | schema:isbn | 978-3-030-10691-1 |
87 | ″ | ″ | 978-3-030-10692-8 |
88 | ″ | schema:name | Numerical Methods and Applications |
89 | ″ | rdf:type | schema:Book |
90 | N7c71c3ded5684257a102b08ba1f6a173 | schema:familyName | Georgiev |
91 | ″ | schema:givenName | Krassimir |
92 | ″ | rdf:type | schema:Person |
93 | Nbf02a09fea4644d6aac41cb5661089b4 | rdf:first | N7c71c3ded5684257a102b08ba1f6a173 |
94 | ″ | rdf:rest | rdf:nil |
95 | Nc65f9534dfcb476c87f8b6eaeb76c7cc | rdf:first | N01b44a39d52a4a2e9b1e10f0cc390ef1 |
96 | ″ | rdf:rest | Nbf02a09fea4644d6aac41cb5661089b4 |
97 | Ncccf0025350f458ea09e5d19faca304b | rdf:first | sg:person.015745057111.08 |
98 | ″ | rdf:rest | rdf:nil |
99 | Nf4a6ed0232044c3e85697fb155e93a95 | schema:familyName | Nikolov |
100 | ″ | schema:givenName | Geno |
101 | ″ | rdf:type | schema:Person |
102 | anzsrc-for:10 | schema:inDefinedTermSet | anzsrc-for: |
103 | ″ | schema:name | Technology |
104 | ″ | rdf:type | schema:DefinedTerm |
105 | anzsrc-for:1005 | schema:inDefinedTermSet | anzsrc-for: |
106 | ″ | schema:name | Communications Technologies |
107 | ″ | rdf:type | schema:DefinedTerm |
108 | sg:person.011173106320.18 | schema:affiliation | grid-institutes:None |
109 | ″ | schema:familyName | Fidanova |
110 | ″ | schema:givenName | Stefka |
111 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173106320.18 |
112 | ″ | rdf:type | schema:Person |
113 | sg:person.015745057111.08 | schema:affiliation | grid-institutes:None |
114 | ″ | schema:familyName | Roeva |
115 | ″ | schema:givenName | Olympia |
116 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015745057111.08 |
117 | ″ | rdf:type | schema:Person |
118 | grid-institutes:None | schema:alternateName | Institute of Biophysics and Biomedical Engineering – BAS, Acad. G. Bonchev Str., bl. 105, 1113, Sofia, Bulgaria |
119 | ″ | ″ | Institute of Information and Communication Technologies – BAS, Acad. G. Bonchev Str., bl. 25A, 1113, Sofia, Bulgaria |
120 | ″ | schema:name | Institute of Biophysics and Biomedical Engineering – BAS, Acad. G. Bonchev Str., bl. 105, 1113, Sofia, Bulgaria |
121 | ″ | ″ | Institute of Information and Communication Technologies – BAS, Acad. G. Bonchev Str., bl. 25A, 1113, Sofia, Bulgaria |
122 | ″ | rdf:type | schema:Organization |