From Movement to Events: Improving Soccer Match Annotations View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2018-12-08

AUTHORS

Manuel Stein , Daniel Seebacher , Tassilo Karge , Tom Polk , Michael Grossniklaus , Daniel A. Keim

ABSTRACT

Match analysis has become an important task in everyday work at professional soccer clubs in order to improve team performance. Video analysts regularly spend up to several days analyzing and summarizing matches based on tracked and annotated match data. Although there already exists extensive capabilities to track the movement of players and the ball from multimedia data sources such as video recordings, there is no capability to sufficiently detect dynamic and complex events within these data. As a consequence, analysts have to rely on manually created annotations, which are very time-consuming and expensive to create. We propose a novel method for the semi-automatic definition and detection of events based entirely on movement data of players and the ball. Incorporating Allen’s interval algebra into a visual analytics system, we enable analysts to visually define as well as search for complex, hierarchical events. We demonstrate the usefulness of our approach by quantitatively comparing our automatically detected events with manually annotated events from a professional data provider as well as several expert interviews. The results of our evaluation show that the required annotation time for complete matches by using our system can be reduced to a few seconds while achieving a similar level of performance. More... »

PAGES

130-142

Book

TITLE

MultiMedia Modeling

ISBN

978-3-030-05709-1
978-3-030-05710-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-05710-7_11

DOI

http://dx.doi.org/10.1007/978-3-030-05710-7_11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110447796


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Konstanz, Konstanz, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9811.1", 
          "name": [
            "University of Konstanz, Konstanz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stein", 
        "givenName": "Manuel", 
        "id": "sg:person.016251627170.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016251627170.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Konstanz, Konstanz, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9811.1", 
          "name": [
            "University of Konstanz, Konstanz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seebacher", 
        "givenName": "Daniel", 
        "id": "sg:person.014055264163.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014055264163.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Konstanz, Konstanz, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9811.1", 
          "name": [
            "University of Konstanz, Konstanz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karge", 
        "givenName": "Tassilo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Konstanz, Konstanz, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9811.1", 
          "name": [
            "University of Konstanz, Konstanz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Polk", 
        "givenName": "Tom", 
        "id": "sg:person.010166477237.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010166477237.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Konstanz, Konstanz, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9811.1", 
          "name": [
            "University of Konstanz, Konstanz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grossniklaus", 
        "givenName": "Michael", 
        "id": "sg:person.016521742177.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016521742177.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Konstanz, Konstanz, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9811.1", 
          "name": [
            "University of Konstanz, Konstanz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Keim", 
        "givenName": "Daniel A.", 
        "id": "sg:person.0635776571.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635776571.01"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2018-12-08", 
    "datePublishedReg": "2018-12-08", 
    "description": "Match analysis has become an important task in everyday work at professional soccer clubs in order to improve team performance. Video analysts regularly spend up\u00a0to several days analyzing and summarizing matches based on tracked and annotated match data. Although there already exists extensive capabilities to track the movement of players and the ball from multimedia data sources such as video recordings, there is no capability to sufficiently detect dynamic and complex events within these data. As a consequence, analysts have to rely on manually created annotations, which are very time-consuming and expensive to create. We propose a novel method for the semi-automatic definition and detection of events based entirely on movement data of players and the ball. Incorporating Allen\u2019s interval algebra into a visual analytics system, we enable analysts to visually define as well as search for complex, hierarchical events. We demonstrate the usefulness of our approach by quantitatively comparing our automatically detected events with manually annotated events from a professional data provider as well as several expert interviews. The results of our evaluation show that the required annotation time for complete matches by using our system can be reduced to a few seconds while achieving a similar level of performance.", 
    "editor": [
      {
        "familyName": "Kompatsiaris", 
        "givenName": "Ioannis", 
        "type": "Person"
      }, 
      {
        "familyName": "Huet", 
        "givenName": "Benoit", 
        "type": "Person"
      }, 
      {
        "familyName": "Mezaris", 
        "givenName": "Vasileios", 
        "type": "Person"
      }, 
      {
        "familyName": "Gurrin", 
        "givenName": "Cathal", 
        "type": "Person"
      }, 
      {
        "familyName": "Cheng", 
        "givenName": "Wen-Huang", 
        "type": "Person"
      }, 
      {
        "familyName": "Vrochidis", 
        "givenName": "Stefanos", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-05710-7_11", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-030-05709-1", 
        "978-3-030-05710-7"
      ], 
      "name": "MultiMedia Modeling", 
      "type": "Book"
    }, 
    "keywords": [
      "interval algebra", 
      "multimedia data sources", 
      "visual analytics system", 
      "Allen's interval algebra", 
      "semi-automatic definition", 
      "detection of events", 
      "annotation time", 
      "analytics system", 
      "data providers", 
      "video analysts", 
      "evaluation show", 
      "hierarchical events", 
      "important task", 
      "movement of players", 
      "extensive capabilities", 
      "data sources", 
      "movement data", 
      "complex events", 
      "annotation", 
      "match data", 
      "analysts", 
      "novel method", 
      "capability", 
      "team performance", 
      "video recordings", 
      "expert interviews", 
      "everyday work", 
      "performance", 
      "task", 
      "match", 
      "system", 
      "players", 
      "data", 
      "providers", 
      "match analysis", 
      "complete match", 
      "search", 
      "detection", 
      "seconds", 
      "work", 
      "definition", 
      "usefulness", 
      "order", 
      "method", 
      "movement", 
      "show", 
      "time", 
      "algebra", 
      "events", 
      "results", 
      "recordings", 
      "ball", 
      "source", 
      "professional soccer clubs", 
      "analysis", 
      "soccer clubs", 
      "levels", 
      "interviews", 
      "consequences", 
      "similar levels", 
      "clubs", 
      "days", 
      "approach"
    ], 
    "name": "From Movement to Events: Improving Soccer Match Annotations", 
    "pagination": "130-142", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110447796"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-05710-7_11"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-05710-7_11", 
      "https://app.dimensions.ai/details/publication/pub.1110447796"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-09-02T16:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/chapter/chapter_79.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-030-05710-7_11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-05710-7_11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-05710-7_11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-05710-7_11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-05710-7_11'


 

This table displays all metadata directly associated to this object as RDF triples.

181 TRIPLES      22 PREDICATES      87 URIs      80 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-05710-7_11 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nf93ae4d9f51548e3b30f5387b02b9ea9
4 schema:datePublished 2018-12-08
5 schema:datePublishedReg 2018-12-08
6 schema:description Match analysis has become an important task in everyday work at professional soccer clubs in order to improve team performance. Video analysts regularly spend up to several days analyzing and summarizing matches based on tracked and annotated match data. Although there already exists extensive capabilities to track the movement of players and the ball from multimedia data sources such as video recordings, there is no capability to sufficiently detect dynamic and complex events within these data. As a consequence, analysts have to rely on manually created annotations, which are very time-consuming and expensive to create. We propose a novel method for the semi-automatic definition and detection of events based entirely on movement data of players and the ball. Incorporating Allen’s interval algebra into a visual analytics system, we enable analysts to visually define as well as search for complex, hierarchical events. We demonstrate the usefulness of our approach by quantitatively comparing our automatically detected events with manually annotated events from a professional data provider as well as several expert interviews. The results of our evaluation show that the required annotation time for complete matches by using our system can be reduced to a few seconds while achieving a similar level of performance.
7 schema:editor Nf0771e0411bc45dfbd306bf246700da1
8 schema:genre chapter
9 schema:isAccessibleForFree true
10 schema:isPartOf N7a059beb4a51463984aacd7b1dc5523e
11 schema:keywords Allen's interval algebra
12 algebra
13 analysis
14 analysts
15 analytics system
16 annotation
17 annotation time
18 approach
19 ball
20 capability
21 clubs
22 complete match
23 complex events
24 consequences
25 data
26 data providers
27 data sources
28 days
29 definition
30 detection
31 detection of events
32 evaluation show
33 events
34 everyday work
35 expert interviews
36 extensive capabilities
37 hierarchical events
38 important task
39 interval algebra
40 interviews
41 levels
42 match
43 match analysis
44 match data
45 method
46 movement
47 movement data
48 movement of players
49 multimedia data sources
50 novel method
51 order
52 performance
53 players
54 professional soccer clubs
55 providers
56 recordings
57 results
58 search
59 seconds
60 semi-automatic definition
61 show
62 similar levels
63 soccer clubs
64 source
65 system
66 task
67 team performance
68 time
69 usefulness
70 video analysts
71 video recordings
72 visual analytics system
73 work
74 schema:name From Movement to Events: Improving Soccer Match Annotations
75 schema:pagination 130-142
76 schema:productId N2adf964c76df45cb9861829fc381d8c0
77 N620e3c2f2dbc412f8b8e4243d30728c9
78 schema:publisher Nda96dd0116bf4e7a985a4927b65e1747
79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110447796
80 https://doi.org/10.1007/978-3-030-05710-7_11
81 schema:sdDatePublished 2022-09-02T16:17
82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
83 schema:sdPublisher N8836d03ee0f3416180fcf9caae6e475f
84 schema:url https://doi.org/10.1007/978-3-030-05710-7_11
85 sgo:license sg:explorer/license/
86 sgo:sdDataset chapters
87 rdf:type schema:Chapter
88 N0785ea3b4b6047709d975cc2e41b51ba rdf:first N3e53081263f94c8c828b8e90fb4924cc
89 rdf:rest rdf:nil
90 N087fbb430edd4edc99e6bff568881083 rdf:first sg:person.016521742177.80
91 rdf:rest Neaf98c0fa66b45f699ad33fc8b7b602e
92 N10b9d52721af49308638c98f5f932649 rdf:first N560656406db0449b814f47bcf86fed39
93 rdf:rest N7abfb0eaec8446d78ea99648689d3849
94 N1a56c9c13d9e44399aa88afc1d865670 schema:familyName Huet
95 schema:givenName Benoit
96 rdf:type schema:Person
97 N2adf964c76df45cb9861829fc381d8c0 schema:name doi
98 schema:value 10.1007/978-3-030-05710-7_11
99 rdf:type schema:PropertyValue
100 N2f9004b464a443f7bdca027ec90fac91 schema:familyName Mezaris
101 schema:givenName Vasileios
102 rdf:type schema:Person
103 N3e53081263f94c8c828b8e90fb4924cc schema:familyName Vrochidis
104 schema:givenName Stefanos
105 rdf:type schema:Person
106 N4c24621ef443410dad7fe187068f853c schema:affiliation grid-institutes:grid.9811.1
107 schema:familyName Karge
108 schema:givenName Tassilo
109 rdf:type schema:Person
110 N560656406db0449b814f47bcf86fed39 schema:familyName Gurrin
111 schema:givenName Cathal
112 rdf:type schema:Person
113 N620e3c2f2dbc412f8b8e4243d30728c9 schema:name dimensions_id
114 schema:value pub.1110447796
115 rdf:type schema:PropertyValue
116 N70094bcc85614a9bb70a991bb2cf714f rdf:first N4c24621ef443410dad7fe187068f853c
117 rdf:rest Nd7c74b419799414baaa6868e97afb327
118 N74125d9e317a4225b6e2f76f02faf5e2 rdf:first sg:person.014055264163.61
119 rdf:rest N70094bcc85614a9bb70a991bb2cf714f
120 N7a059beb4a51463984aacd7b1dc5523e schema:isbn 978-3-030-05709-1
121 978-3-030-05710-7
122 schema:name MultiMedia Modeling
123 rdf:type schema:Book
124 N7abfb0eaec8446d78ea99648689d3849 rdf:first N99abeec0d86b4793988bff944e1dea48
125 rdf:rest N0785ea3b4b6047709d975cc2e41b51ba
126 N8836d03ee0f3416180fcf9caae6e475f schema:name Springer Nature - SN SciGraph project
127 rdf:type schema:Organization
128 N99abeec0d86b4793988bff944e1dea48 schema:familyName Cheng
129 schema:givenName Wen-Huang
130 rdf:type schema:Person
131 Na4aafc55d7334dbbbf9498803b8026c2 rdf:first N1a56c9c13d9e44399aa88afc1d865670
132 rdf:rest Nb3a71c17c59a4063bcd4e5ba673d70ef
133 Nb3a71c17c59a4063bcd4e5ba673d70ef rdf:first N2f9004b464a443f7bdca027ec90fac91
134 rdf:rest N10b9d52721af49308638c98f5f932649
135 Nc98583eb7af046b2bfff5f9d0ab9bff9 schema:familyName Kompatsiaris
136 schema:givenName Ioannis
137 rdf:type schema:Person
138 Nd7c74b419799414baaa6868e97afb327 rdf:first sg:person.010166477237.50
139 rdf:rest N087fbb430edd4edc99e6bff568881083
140 Nda96dd0116bf4e7a985a4927b65e1747 schema:name Springer Nature
141 rdf:type schema:Organisation
142 Neaf98c0fa66b45f699ad33fc8b7b602e rdf:first sg:person.0635776571.01
143 rdf:rest rdf:nil
144 Nf0771e0411bc45dfbd306bf246700da1 rdf:first Nc98583eb7af046b2bfff5f9d0ab9bff9
145 rdf:rest Na4aafc55d7334dbbbf9498803b8026c2
146 Nf93ae4d9f51548e3b30f5387b02b9ea9 rdf:first sg:person.016251627170.54
147 rdf:rest N74125d9e317a4225b6e2f76f02faf5e2
148 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
149 schema:name Information and Computing Sciences
150 rdf:type schema:DefinedTerm
151 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
152 schema:name Artificial Intelligence and Image Processing
153 rdf:type schema:DefinedTerm
154 sg:person.010166477237.50 schema:affiliation grid-institutes:grid.9811.1
155 schema:familyName Polk
156 schema:givenName Tom
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010166477237.50
158 rdf:type schema:Person
159 sg:person.014055264163.61 schema:affiliation grid-institutes:grid.9811.1
160 schema:familyName Seebacher
161 schema:givenName Daniel
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014055264163.61
163 rdf:type schema:Person
164 sg:person.016251627170.54 schema:affiliation grid-institutes:grid.9811.1
165 schema:familyName Stein
166 schema:givenName Manuel
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016251627170.54
168 rdf:type schema:Person
169 sg:person.016521742177.80 schema:affiliation grid-institutes:grid.9811.1
170 schema:familyName Grossniklaus
171 schema:givenName Michael
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016521742177.80
173 rdf:type schema:Person
174 sg:person.0635776571.01 schema:affiliation grid-institutes:grid.9811.1
175 schema:familyName Keim
176 schema:givenName Daniel A.
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635776571.01
178 rdf:type schema:Person
179 grid-institutes:grid.9811.1 schema:alternateName University of Konstanz, Konstanz, Germany
180 schema:name University of Konstanz, Konstanz, Germany
181 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...