From Movement to Events: Improving Soccer Match Annotations View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2018-12-08

AUTHORS

Manuel Stein , Daniel Seebacher , Tassilo Karge , Tom Polk , Michael Grossniklaus , Daniel A. Keim

ABSTRACT

Match analysis has become an important task in everyday work at professional soccer clubs in order to improve team performance. Video analysts regularly spend up to several days analyzing and summarizing matches based on tracked and annotated match data. Although there already exists extensive capabilities to track the movement of players and the ball from multimedia data sources such as video recordings, there is no capability to sufficiently detect dynamic and complex events within these data. As a consequence, analysts have to rely on manually created annotations, which are very time-consuming and expensive to create. We propose a novel method for the semi-automatic definition and detection of events based entirely on movement data of players and the ball. Incorporating Allen’s interval algebra into a visual analytics system, we enable analysts to visually define as well as search for complex, hierarchical events. We demonstrate the usefulness of our approach by quantitatively comparing our automatically detected events with manually annotated events from a professional data provider as well as several expert interviews. The results of our evaluation show that the required annotation time for complete matches by using our system can be reduced to a few seconds while achieving a similar level of performance. More... »

PAGES

130-142

Book

TITLE

MultiMedia Modeling

ISBN

978-3-030-05709-1
978-3-030-05710-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-05710-7_11

DOI

http://dx.doi.org/10.1007/978-3-030-05710-7_11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110447796


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Konstanz, Konstanz, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9811.1", 
          "name": [
            "University of Konstanz, Konstanz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stein", 
        "givenName": "Manuel", 
        "id": "sg:person.016251627170.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016251627170.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Konstanz, Konstanz, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9811.1", 
          "name": [
            "University of Konstanz, Konstanz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seebacher", 
        "givenName": "Daniel", 
        "id": "sg:person.014055264163.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014055264163.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Konstanz, Konstanz, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9811.1", 
          "name": [
            "University of Konstanz, Konstanz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karge", 
        "givenName": "Tassilo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Konstanz, Konstanz, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9811.1", 
          "name": [
            "University of Konstanz, Konstanz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Polk", 
        "givenName": "Tom", 
        "id": "sg:person.010166477237.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010166477237.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Konstanz, Konstanz, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9811.1", 
          "name": [
            "University of Konstanz, Konstanz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grossniklaus", 
        "givenName": "Michael", 
        "id": "sg:person.016521742177.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016521742177.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Konstanz, Konstanz, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9811.1", 
          "name": [
            "University of Konstanz, Konstanz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Keim", 
        "givenName": "Daniel A.", 
        "id": "sg:person.0635776571.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635776571.01"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2018-12-08", 
    "datePublishedReg": "2018-12-08", 
    "description": "Match analysis has become an important task in everyday work at professional soccer clubs in order to improve team performance. Video analysts regularly spend up\u00a0to several days analyzing and summarizing matches based on tracked and annotated match data. Although there already exists extensive capabilities to track the movement of players and the ball from multimedia data sources such as video recordings, there is no capability to sufficiently detect dynamic and complex events within these data. As a consequence, analysts have to rely on manually created annotations, which are very time-consuming and expensive to create. We propose a novel method for the semi-automatic definition and detection of events based entirely on movement data of players and the ball. Incorporating Allen\u2019s interval algebra into a visual analytics system, we enable analysts to visually define as well as search for complex, hierarchical events. We demonstrate the usefulness of our approach by quantitatively comparing our automatically detected events with manually annotated events from a professional data provider as well as several expert interviews. The results of our evaluation show that the required annotation time for complete matches by using our system can be reduced to a few seconds while achieving a similar level of performance.", 
    "editor": [
      {
        "familyName": "Kompatsiaris", 
        "givenName": "Ioannis", 
        "type": "Person"
      }, 
      {
        "familyName": "Huet", 
        "givenName": "Benoit", 
        "type": "Person"
      }, 
      {
        "familyName": "Mezaris", 
        "givenName": "Vasileios", 
        "type": "Person"
      }, 
      {
        "familyName": "Gurrin", 
        "givenName": "Cathal", 
        "type": "Person"
      }, 
      {
        "familyName": "Cheng", 
        "givenName": "Wen-Huang", 
        "type": "Person"
      }, 
      {
        "familyName": "Vrochidis", 
        "givenName": "Stefanos", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-05710-7_11", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-030-05709-1", 
        "978-3-030-05710-7"
      ], 
      "name": "MultiMedia Modeling", 
      "type": "Book"
    }, 
    "keywords": [
      "interval algebra", 
      "multimedia data sources", 
      "visual analytics system", 
      "Allen's interval algebra", 
      "semi-automatic definition", 
      "detection of events", 
      "annotation time", 
      "analytics system", 
      "data providers", 
      "video analysts", 
      "evaluation show", 
      "hierarchical events", 
      "important task", 
      "movement of players", 
      "extensive capabilities", 
      "data sources", 
      "movement data", 
      "complex events", 
      "annotation", 
      "match data", 
      "analysts", 
      "novel method", 
      "capability", 
      "team performance", 
      "video recordings", 
      "expert interviews", 
      "everyday work", 
      "performance", 
      "task", 
      "match", 
      "system", 
      "players", 
      "data", 
      "providers", 
      "match analysis", 
      "complete match", 
      "search", 
      "detection", 
      "seconds", 
      "work", 
      "definition", 
      "usefulness", 
      "order", 
      "method", 
      "movement", 
      "show", 
      "time", 
      "algebra", 
      "events", 
      "results", 
      "recordings", 
      "ball", 
      "source", 
      "professional soccer clubs", 
      "analysis", 
      "soccer clubs", 
      "levels", 
      "interviews", 
      "consequences", 
      "similar levels", 
      "clubs", 
      "days", 
      "approach"
    ], 
    "name": "From Movement to Events: Improving Soccer Match Annotations", 
    "pagination": "130-142", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110447796"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-05710-7_11"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-05710-7_11", 
      "https://app.dimensions.ai/details/publication/pub.1110447796"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_54.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-030-05710-7_11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-05710-7_11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-05710-7_11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-05710-7_11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-05710-7_11'


 

This table displays all metadata directly associated to this object as RDF triples.

181 TRIPLES      22 PREDICATES      87 URIs      80 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-05710-7_11 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ne30592b1d10642aabeb65792fe5e4024
4 schema:datePublished 2018-12-08
5 schema:datePublishedReg 2018-12-08
6 schema:description Match analysis has become an important task in everyday work at professional soccer clubs in order to improve team performance. Video analysts regularly spend up to several days analyzing and summarizing matches based on tracked and annotated match data. Although there already exists extensive capabilities to track the movement of players and the ball from multimedia data sources such as video recordings, there is no capability to sufficiently detect dynamic and complex events within these data. As a consequence, analysts have to rely on manually created annotations, which are very time-consuming and expensive to create. We propose a novel method for the semi-automatic definition and detection of events based entirely on movement data of players and the ball. Incorporating Allen’s interval algebra into a visual analytics system, we enable analysts to visually define as well as search for complex, hierarchical events. We demonstrate the usefulness of our approach by quantitatively comparing our automatically detected events with manually annotated events from a professional data provider as well as several expert interviews. The results of our evaluation show that the required annotation time for complete matches by using our system can be reduced to a few seconds while achieving a similar level of performance.
7 schema:editor N33d49ae609544f9a8d2fad1289a1bb56
8 schema:genre chapter
9 schema:isAccessibleForFree true
10 schema:isPartOf Ne2c289d4c3ed4d2ea91fc4a8d7f48d43
11 schema:keywords Allen's interval algebra
12 algebra
13 analysis
14 analysts
15 analytics system
16 annotation
17 annotation time
18 approach
19 ball
20 capability
21 clubs
22 complete match
23 complex events
24 consequences
25 data
26 data providers
27 data sources
28 days
29 definition
30 detection
31 detection of events
32 evaluation show
33 events
34 everyday work
35 expert interviews
36 extensive capabilities
37 hierarchical events
38 important task
39 interval algebra
40 interviews
41 levels
42 match
43 match analysis
44 match data
45 method
46 movement
47 movement data
48 movement of players
49 multimedia data sources
50 novel method
51 order
52 performance
53 players
54 professional soccer clubs
55 providers
56 recordings
57 results
58 search
59 seconds
60 semi-automatic definition
61 show
62 similar levels
63 soccer clubs
64 source
65 system
66 task
67 team performance
68 time
69 usefulness
70 video analysts
71 video recordings
72 visual analytics system
73 work
74 schema:name From Movement to Events: Improving Soccer Match Annotations
75 schema:pagination 130-142
76 schema:productId N0ceed6ad0c7c4073ae534d0026d414d0
77 N8195cd9e82fc4ba1aaa0b258b35385d9
78 schema:publisher N54981ff468db43438f8493afa50a6073
79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110447796
80 https://doi.org/10.1007/978-3-030-05710-7_11
81 schema:sdDatePublished 2022-12-01T06:55
82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
83 schema:sdPublisher N4f2d1a24a2214c6390b5b8b32c414ab8
84 schema:url https://doi.org/10.1007/978-3-030-05710-7_11
85 sgo:license sg:explorer/license/
86 sgo:sdDataset chapters
87 rdf:type schema:Chapter
88 N084adf0f958c49e8b8de2d3d84774009 rdf:first N268e769db6b9455a96b864d4d79fae7a
89 rdf:rest Na7e97454cb964d3dbdcee416c572a220
90 N0ceed6ad0c7c4073ae534d0026d414d0 schema:name dimensions_id
91 schema:value pub.1110447796
92 rdf:type schema:PropertyValue
93 N1993037a168e43ce934e46dbe4a91915 rdf:first sg:person.010166477237.50
94 rdf:rest N1c611973cf47445d92e157ef420127ab
95 N1c611973cf47445d92e157ef420127ab rdf:first sg:person.016521742177.80
96 rdf:rest Nbfa91960a392427abcc600aaeda74a47
97 N268e769db6b9455a96b864d4d79fae7a schema:familyName Huet
98 schema:givenName Benoit
99 rdf:type schema:Person
100 N2cff9054361a4eb592b144e15957bc0d rdf:first sg:person.014055264163.61
101 rdf:rest N9bca692914fc4d59821767f86c3577f7
102 N33d49ae609544f9a8d2fad1289a1bb56 rdf:first Nd56417e79064477198dfb9cd14fbd732
103 rdf:rest N084adf0f958c49e8b8de2d3d84774009
104 N4f2d1a24a2214c6390b5b8b32c414ab8 schema:name Springer Nature - SN SciGraph project
105 rdf:type schema:Organization
106 N54981ff468db43438f8493afa50a6073 schema:name Springer Nature
107 rdf:type schema:Organisation
108 N54e67e17089d4206bca8c7f838d817d6 rdf:first N7868525e49b645cbaf54db20162d081d
109 rdf:rest N8f9c21fe413549cfac6b7a72cf99191b
110 N60b0ac37d7bc433384d2fb1f5c52f277 schema:familyName Vrochidis
111 schema:givenName Stefanos
112 rdf:type schema:Person
113 N7868525e49b645cbaf54db20162d081d schema:familyName Gurrin
114 schema:givenName Cathal
115 rdf:type schema:Person
116 N78bafc94e50d4bcea00395e94fa4c67c schema:affiliation grid-institutes:grid.9811.1
117 schema:familyName Karge
118 schema:givenName Tassilo
119 rdf:type schema:Person
120 N8195cd9e82fc4ba1aaa0b258b35385d9 schema:name doi
121 schema:value 10.1007/978-3-030-05710-7_11
122 rdf:type schema:PropertyValue
123 N84a6ab568cdb404f9d27b0862c90374c rdf:first N60b0ac37d7bc433384d2fb1f5c52f277
124 rdf:rest rdf:nil
125 N8f9c21fe413549cfac6b7a72cf99191b rdf:first Nbd490f954cbc41e2804b58c982f8bfe3
126 rdf:rest N84a6ab568cdb404f9d27b0862c90374c
127 N9bca692914fc4d59821767f86c3577f7 rdf:first N78bafc94e50d4bcea00395e94fa4c67c
128 rdf:rest N1993037a168e43ce934e46dbe4a91915
129 Na7e97454cb964d3dbdcee416c572a220 rdf:first Nabbdb3f434b04290b45b7149de335388
130 rdf:rest N54e67e17089d4206bca8c7f838d817d6
131 Nabbdb3f434b04290b45b7149de335388 schema:familyName Mezaris
132 schema:givenName Vasileios
133 rdf:type schema:Person
134 Nbd490f954cbc41e2804b58c982f8bfe3 schema:familyName Cheng
135 schema:givenName Wen-Huang
136 rdf:type schema:Person
137 Nbfa91960a392427abcc600aaeda74a47 rdf:first sg:person.0635776571.01
138 rdf:rest rdf:nil
139 Nd56417e79064477198dfb9cd14fbd732 schema:familyName Kompatsiaris
140 schema:givenName Ioannis
141 rdf:type schema:Person
142 Ne2c289d4c3ed4d2ea91fc4a8d7f48d43 schema:isbn 978-3-030-05709-1
143 978-3-030-05710-7
144 schema:name MultiMedia Modeling
145 rdf:type schema:Book
146 Ne30592b1d10642aabeb65792fe5e4024 rdf:first sg:person.016251627170.54
147 rdf:rest N2cff9054361a4eb592b144e15957bc0d
148 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
149 schema:name Information and Computing Sciences
150 rdf:type schema:DefinedTerm
151 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
152 schema:name Artificial Intelligence and Image Processing
153 rdf:type schema:DefinedTerm
154 sg:person.010166477237.50 schema:affiliation grid-institutes:grid.9811.1
155 schema:familyName Polk
156 schema:givenName Tom
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010166477237.50
158 rdf:type schema:Person
159 sg:person.014055264163.61 schema:affiliation grid-institutes:grid.9811.1
160 schema:familyName Seebacher
161 schema:givenName Daniel
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014055264163.61
163 rdf:type schema:Person
164 sg:person.016251627170.54 schema:affiliation grid-institutes:grid.9811.1
165 schema:familyName Stein
166 schema:givenName Manuel
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016251627170.54
168 rdf:type schema:Person
169 sg:person.016521742177.80 schema:affiliation grid-institutes:grid.9811.1
170 schema:familyName Grossniklaus
171 schema:givenName Michael
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016521742177.80
173 rdf:type schema:Person
174 sg:person.0635776571.01 schema:affiliation grid-institutes:grid.9811.1
175 schema:familyName Keim
176 schema:givenName Daniel A.
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635776571.01
178 rdf:type schema:Person
179 grid-institutes:grid.9811.1 schema:alternateName University of Konstanz, Konstanz, Germany
180 schema:name University of Konstanz, Konstanz, Germany
181 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...