Visualization and Visual Analytic Techniques for Patterns View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2019-01-19

AUTHORS

Wolfgang Jentner , Daniel A. Keim

ABSTRACT

This chapter surveys visualization techniques for frequent itemsets, association rules, and sequential patterns. The human is crucial in the process of identifying interesting patterns and thus, mining such patterns and visualizing them is important for the decision making. The complementary feedback loop that a user may use to refine parameters through inspecting the current mining results is broadly described as visual analytics. This survey identifies visual designs for patterns of each category and analyzes and compares their strengths and weaknesses systematically. The comparison and overview help decision-makers selecting the appropriate technique for their tasks and systems while knowing about their limitations. More... »

PAGES

303-337

Book

TITLE

High-Utility Pattern Mining

ISBN

978-3-030-04920-1
978-3-030-04921-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-04921-8_12

DOI

http://dx.doi.org/10.1007/978-3-030-04921-8_12

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111530662


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Universit\u00e4t Konstanz, Universit\u00e4tsstr. 10, 78467, Konstanz, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9811.1", 
          "name": [
            "Universit\u00e4t Konstanz, Universit\u00e4tsstr. 10, 78467, Konstanz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jentner", 
        "givenName": "Wolfgang", 
        "id": "sg:person.010324047633.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010324047633.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e4t Konstanz, Universit\u00e4tsstr. 10, 78467, Konstanz, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9811.1", 
          "name": [
            "Universit\u00e4t Konstanz, Universit\u00e4tsstr. 10, 78467, Konstanz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Keim", 
        "givenName": "Daniel A.", 
        "id": "sg:person.0635776571.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635776571.01"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2019-01-19", 
    "datePublishedReg": "2019-01-19", 
    "description": "This chapter surveys visualization techniques for frequent itemsets, association rules, and sequential patterns. The human is crucial in the process of identifying interesting patterns and thus, mining such patterns and visualizing them is important for the decision making. The complementary feedback loop that a user may use to refine parameters through inspecting the current mining results is broadly described as visual analytics. This survey identifies visual designs for patterns of each category and analyzes and compares their strengths and weaknesses systematically. The comparison and overview help decision-makers selecting the appropriate technique for their tasks and systems while knowing about their limitations.", 
    "editor": [
      {
        "familyName": "Fournier-Viger", 
        "givenName": "Philippe", 
        "type": "Person"
      }, 
      {
        "familyName": "Lin", 
        "givenName": "Jerry Chun-Wei", 
        "type": "Person"
      }, 
      {
        "familyName": "Nkambou", 
        "givenName": "Roger", 
        "type": "Person"
      }, 
      {
        "familyName": "Vo", 
        "givenName": "Bay", 
        "type": "Person"
      }, 
      {
        "familyName": "Tseng", 
        "givenName": "Vincent S.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-04921-8_12", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-030-04920-1", 
        "978-3-030-04921-8"
      ], 
      "name": "High-Utility Pattern Mining", 
      "type": "Book"
    }, 
    "keywords": [
      "visual analytics techniques", 
      "visual analytics", 
      "frequent itemsets", 
      "mining results", 
      "association rules", 
      "sequential patterns", 
      "visualization techniques", 
      "interesting patterns", 
      "visual design", 
      "complementary feedback loops", 
      "analytic techniques", 
      "itemsets", 
      "analytics", 
      "such patterns", 
      "users", 
      "appropriate technique", 
      "task", 
      "technique", 
      "visualization", 
      "rules", 
      "decisions", 
      "system", 
      "design", 
      "feedback loop", 
      "limitations", 
      "weakness", 
      "patterns", 
      "analyzes", 
      "process", 
      "categories", 
      "chapter", 
      "results", 
      "humans", 
      "loop", 
      "parameters", 
      "comparison", 
      "survey", 
      "strength"
    ], 
    "name": "Visualization and Visual Analytic Techniques for Patterns", 
    "pagination": "303-337", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111530662"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-04921-8_12"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-04921-8_12", 
      "https://app.dimensions.ai/details/publication/pub.1111530662"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-10-01T06:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/chapter/chapter_399.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-030-04921-8_12"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-04921-8_12'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-04921-8_12'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-04921-8_12'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-04921-8_12'


 

This table displays all metadata directly associated to this object as RDF triples.

124 TRIPLES      22 PREDICATES      61 URIs      54 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-04921-8_12 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N17b01437ed094608bc6cda881fb32f2c
4 schema:datePublished 2019-01-19
5 schema:datePublishedReg 2019-01-19
6 schema:description This chapter surveys visualization techniques for frequent itemsets, association rules, and sequential patterns. The human is crucial in the process of identifying interesting patterns and thus, mining such patterns and visualizing them is important for the decision making. The complementary feedback loop that a user may use to refine parameters through inspecting the current mining results is broadly described as visual analytics. This survey identifies visual designs for patterns of each category and analyzes and compares their strengths and weaknesses systematically. The comparison and overview help decision-makers selecting the appropriate technique for their tasks and systems while knowing about their limitations.
7 schema:editor N717ee9b6d0354d99906872585541e1fe
8 schema:genre chapter
9 schema:isAccessibleForFree true
10 schema:isPartOf N3760fb2837524b62b3267cc48baf5504
11 schema:keywords analytic techniques
12 analytics
13 analyzes
14 appropriate technique
15 association rules
16 categories
17 chapter
18 comparison
19 complementary feedback loops
20 decisions
21 design
22 feedback loop
23 frequent itemsets
24 humans
25 interesting patterns
26 itemsets
27 limitations
28 loop
29 mining results
30 parameters
31 patterns
32 process
33 results
34 rules
35 sequential patterns
36 strength
37 such patterns
38 survey
39 system
40 task
41 technique
42 users
43 visual analytics
44 visual analytics techniques
45 visual design
46 visualization
47 visualization techniques
48 weakness
49 schema:name Visualization and Visual Analytic Techniques for Patterns
50 schema:pagination 303-337
51 schema:productId N3f39fc0105b64ebd99a0590380528951
52 Nc2c9a8b39ab44d518baffa419374e962
53 schema:publisher Nfc9a5f5224ea45b7886163a23ce3c627
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111530662
55 https://doi.org/10.1007/978-3-030-04921-8_12
56 schema:sdDatePublished 2022-10-01T06:58
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N3a844b463a014cde8d24bc9896b4ac0e
59 schema:url https://doi.org/10.1007/978-3-030-04921-8_12
60 sgo:license sg:explorer/license/
61 sgo:sdDataset chapters
62 rdf:type schema:Chapter
63 N17b01437ed094608bc6cda881fb32f2c rdf:first sg:person.010324047633.88
64 rdf:rest N88de289a6ba446dea6a4efa094d1fee4
65 N3760fb2837524b62b3267cc48baf5504 schema:isbn 978-3-030-04920-1
66 978-3-030-04921-8
67 schema:name High-Utility Pattern Mining
68 rdf:type schema:Book
69 N3a844b463a014cde8d24bc9896b4ac0e schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 N3f39fc0105b64ebd99a0590380528951 schema:name doi
72 schema:value 10.1007/978-3-030-04921-8_12
73 rdf:type schema:PropertyValue
74 N5ba41eba0c9d40f580b64fb0beee9601 schema:familyName Nkambou
75 schema:givenName Roger
76 rdf:type schema:Person
77 N717ee9b6d0354d99906872585541e1fe rdf:first Ndb55e186567e4d12bd77973d8e5e0a65
78 rdf:rest Ndb623a7c7007432cafc630cff6bfc769
79 N805408f2798a4024a36655ca0e2e36e6 rdf:first Ne711219f540445c48ba36c4b72e029d0
80 rdf:rest Nb650fbc87e2143aca8c75eae5ce917d8
81 N88de289a6ba446dea6a4efa094d1fee4 rdf:first sg:person.0635776571.01
82 rdf:rest rdf:nil
83 N9195042c3f644103af8eb9bff82c7594 schema:familyName Tseng
84 schema:givenName Vincent S.
85 rdf:type schema:Person
86 Nb650fbc87e2143aca8c75eae5ce917d8 rdf:first N9195042c3f644103af8eb9bff82c7594
87 rdf:rest rdf:nil
88 Nb66f713bf94a4a3a924594d54de23d1c schema:familyName Lin
89 schema:givenName Jerry Chun-Wei
90 rdf:type schema:Person
91 Nc2c9a8b39ab44d518baffa419374e962 schema:name dimensions_id
92 schema:value pub.1111530662
93 rdf:type schema:PropertyValue
94 Ndb55e186567e4d12bd77973d8e5e0a65 schema:familyName Fournier-Viger
95 schema:givenName Philippe
96 rdf:type schema:Person
97 Ndb623a7c7007432cafc630cff6bfc769 rdf:first Nb66f713bf94a4a3a924594d54de23d1c
98 rdf:rest Ne1ddf016f8474af7b294bce53c464230
99 Ne1ddf016f8474af7b294bce53c464230 rdf:first N5ba41eba0c9d40f580b64fb0beee9601
100 rdf:rest N805408f2798a4024a36655ca0e2e36e6
101 Ne711219f540445c48ba36c4b72e029d0 schema:familyName Vo
102 schema:givenName Bay
103 rdf:type schema:Person
104 Nfc9a5f5224ea45b7886163a23ce3c627 schema:name Springer Nature
105 rdf:type schema:Organisation
106 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
107 schema:name Information and Computing Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
110 schema:name Information Systems
111 rdf:type schema:DefinedTerm
112 sg:person.010324047633.88 schema:affiliation grid-institutes:grid.9811.1
113 schema:familyName Jentner
114 schema:givenName Wolfgang
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010324047633.88
116 rdf:type schema:Person
117 sg:person.0635776571.01 schema:affiliation grid-institutes:grid.9811.1
118 schema:familyName Keim
119 schema:givenName Daniel A.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635776571.01
121 rdf:type schema:Person
122 grid-institutes:grid.9811.1 schema:alternateName Universität Konstanz, Universitätsstr. 10, 78467, Konstanz, Germany
123 schema:name Universität Konstanz, Universitätsstr. 10, 78467, Konstanz, Germany
124 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...