Using On-Board Diagnostics Data to Analyze Driving Behavior and Fuel Consumption View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-12-01

AUTHORS

Chao-Fu Yeh , Liang-Tay Lin , Pei-Ju Wu , Chi-Chang Huang

ABSTRACT

The reduction of carbon use on the road traffic seems obviously to be a right direction and important strategy in the worldwide environment. In the road traffic, the bus operation belongs to a commercial vehicle related to longer travel time and distance, thus, it deserves to pay more attention on the fuel consumption of bus operation in order to reduce the air pollution emission and increase the energy-saving efficiency. Although bus transport systems contain huge operations data, there is little practical knowledge of how to make use of the data. Hence, this study aims to explore big data of bus transport systems and create valuable environmental operations strategies.Our research aims at using the second generations of on-board diagnostics system (OBD II) to output the real and dynamic data of engine oil consumption. Our research focus on the studying on the eco-driving behavior of bus based on the data from OBD II in order to improve the management of energy-saving for bus operators. In final, the results of research show that there is positive correlation in statistics between the speed, the engine temperature, the ambient air temperature, travel distance and energy consumption. These five variables are associated with the oil consumption. More... »

PAGES

343-351

Book

TITLE

Advances in Smart Vehicular Technology, Transportation, Communication and Applications

ISBN

978-3-030-04584-5
978-3-030-04585-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-04585-2_42

DOI

http://dx.doi.org/10.1007/978-3-030-04585-2_42

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110320682


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0907", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Feng-Chia University, No. 100, Wenhua Rd. Xitun dist., Taichung, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.411298.7", 
          "name": [
            "Feng-Chia University, No. 100, Wenhua Rd. Xitun dist., Taichung, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yeh", 
        "givenName": "Chao-Fu", 
        "id": "sg:person.07734314457.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07734314457.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Feng-Chia University, No. 100, Wenhua Rd. Xitun dist., Taichung, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.411298.7", 
          "name": [
            "Feng-Chia University, No. 100, Wenhua Rd. Xitun dist., Taichung, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Liang-Tay", 
        "id": "sg:person.015412321734.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015412321734.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Feng-Chia University, No. 100, Wenhua Rd. Xitun dist., Taichung, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.411298.7", 
          "name": [
            "Feng-Chia University, No. 100, Wenhua Rd. Xitun dist., Taichung, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Pei-Ju", 
        "id": "sg:person.013276547461.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013276547461.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Feng-Chia University, No. 100, Wenhua Rd. Xitun dist., Taichung, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.411298.7", 
          "name": [
            "Feng-Chia University, No. 100, Wenhua Rd. Xitun dist., Taichung, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Chi-Chang", 
        "id": "sg:person.011761357566.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011761357566.69"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2018-12-01", 
    "datePublishedReg": "2018-12-01", 
    "description": "The reduction of carbon use on the road traffic seems obviously to be a right direction and important strategy in the worldwide environment. In the road traffic, the bus operation belongs to a commercial vehicle related to longer travel time and distance, thus, it deserves to pay more attention on the fuel consumption of bus operation in order to reduce the air pollution emission and increase the energy-saving efficiency. Although bus transport systems contain huge operations data, there is little practical knowledge of how to make use of the data. Hence, this study aims to explore big data of bus transport systems and create valuable environmental operations strategies.Our research aims at using the second generations of on-board diagnostics system (OBD II) to output the real and dynamic data of engine oil consumption. Our research focus on the studying on the eco-driving behavior of bus based on the data from OBD II in order to improve the management of energy-saving for bus operators. In final, the results of research show that there is positive correlation in statistics between the speed, the engine temperature, the ambient air temperature, travel distance and energy consumption. These five variables are associated with the oil consumption.", 
    "editor": [
      {
        "familyName": "Zhao", 
        "givenName": "Yong", 
        "type": "Person"
      }, 
      {
        "familyName": "Wu", 
        "givenName": "Tsu-Yang", 
        "type": "Person"
      }, 
      {
        "familyName": "Chang", 
        "givenName": "Tang-Hsien", 
        "type": "Person"
      }, 
      {
        "familyName": "Pan", 
        "givenName": "Jeng-Shyang", 
        "type": "Person"
      }, 
      {
        "familyName": "Jain", 
        "givenName": "Lakhmi C.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-04585-2_42", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-04584-5", 
        "978-3-030-04585-2"
      ], 
      "name": "Advances in Smart Vehicular Technology, Transportation, Communication and Applications", 
      "type": "Book"
    }, 
    "keywords": [
      "bus transport system", 
      "fuel consumption", 
      "On-Board Diagnostics Data", 
      "bus operations", 
      "engine oil consumption", 
      "energy-saving efficiency", 
      "board diagnostic system", 
      "little practical knowledge", 
      "behavior of buses", 
      "ambient air temperature", 
      "bus operators", 
      "engine temperature", 
      "oil consumption", 
      "road traffic", 
      "commercial vehicles", 
      "OBD-II", 
      "worldwide environment", 
      "operation strategy", 
      "research show", 
      "operation data", 
      "air pollution emissions", 
      "transport system", 
      "energy consumption", 
      "travel distance", 
      "pollution emissions", 
      "right direction", 
      "driving behavior", 
      "air temperature", 
      "practical knowledge", 
      "diagnostic system", 
      "more attention", 
      "big data", 
      "temperature", 
      "dynamic data", 
      "important strategy", 
      "operation", 
      "research focus", 
      "consumption", 
      "strategies", 
      "bus", 
      "vehicles", 
      "system", 
      "management", 
      "speed", 
      "behavior", 
      "efficiency", 
      "research", 
      "eco", 
      "emission", 
      "order", 
      "traffic", 
      "focus", 
      "variables", 
      "carbon use", 
      "distance", 
      "generation", 
      "data", 
      "direction", 
      "knowledge", 
      "attention", 
      "environment", 
      "use", 
      "second generation", 
      "reduction", 
      "diagnostic data", 
      "results", 
      "show", 
      "positive correlation", 
      "time", 
      "operators", 
      "study", 
      "statistics", 
      "correlation"
    ], 
    "name": "Using On-Board Diagnostics Data to Analyze Driving Behavior and Fuel Consumption", 
    "pagination": "343-351", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110320682"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-04585-2_42"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-04585-2_42", 
      "https://app.dimensions.ai/details/publication/pub.1110320682"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_372.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-030-04585-2_42"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-04585-2_42'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-04585-2_42'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-04585-2_42'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-04585-2_42'


 

This table displays all metadata directly associated to this object as RDF triples.

174 TRIPLES      23 PREDICATES      98 URIs      91 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-04585-2_42 schema:about anzsrc-for:09
2 anzsrc-for:0907
3 schema:author N12f3548fe380435685eb096083cbfc0b
4 schema:datePublished 2018-12-01
5 schema:datePublishedReg 2018-12-01
6 schema:description The reduction of carbon use on the road traffic seems obviously to be a right direction and important strategy in the worldwide environment. In the road traffic, the bus operation belongs to a commercial vehicle related to longer travel time and distance, thus, it deserves to pay more attention on the fuel consumption of bus operation in order to reduce the air pollution emission and increase the energy-saving efficiency. Although bus transport systems contain huge operations data, there is little practical knowledge of how to make use of the data. Hence, this study aims to explore big data of bus transport systems and create valuable environmental operations strategies.Our research aims at using the second generations of on-board diagnostics system (OBD II) to output the real and dynamic data of engine oil consumption. Our research focus on the studying on the eco-driving behavior of bus based on the data from OBD II in order to improve the management of energy-saving for bus operators. In final, the results of research show that there is positive correlation in statistics between the speed, the engine temperature, the ambient air temperature, travel distance and energy consumption. These five variables are associated with the oil consumption.
7 schema:editor N3b7bd6203a7746a4b7c89e4c014da197
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N2a94c53ff1c74e92849b92094e78f261
12 schema:keywords OBD-II
13 On-Board Diagnostics Data
14 air pollution emissions
15 air temperature
16 ambient air temperature
17 attention
18 behavior
19 behavior of buses
20 big data
21 board diagnostic system
22 bus
23 bus operations
24 bus operators
25 bus transport system
26 carbon use
27 commercial vehicles
28 consumption
29 correlation
30 data
31 diagnostic data
32 diagnostic system
33 direction
34 distance
35 driving behavior
36 dynamic data
37 eco
38 efficiency
39 emission
40 energy consumption
41 energy-saving efficiency
42 engine oil consumption
43 engine temperature
44 environment
45 focus
46 fuel consumption
47 generation
48 important strategy
49 knowledge
50 little practical knowledge
51 management
52 more attention
53 oil consumption
54 operation
55 operation data
56 operation strategy
57 operators
58 order
59 pollution emissions
60 positive correlation
61 practical knowledge
62 reduction
63 research
64 research focus
65 research show
66 results
67 right direction
68 road traffic
69 second generation
70 show
71 speed
72 statistics
73 strategies
74 study
75 system
76 temperature
77 time
78 traffic
79 transport system
80 travel distance
81 use
82 variables
83 vehicles
84 worldwide environment
85 schema:name Using On-Board Diagnostics Data to Analyze Driving Behavior and Fuel Consumption
86 schema:pagination 343-351
87 schema:productId Nbee2ade314cc4ce59fc3e7f41fc6adaa
88 Neae964c5f56a444cbf9716106fbe98aa
89 schema:publisher Nd8e71b21ff974d82b252fb7c9c8322cf
90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110320682
91 https://doi.org/10.1007/978-3-030-04585-2_42
92 schema:sdDatePublished 2022-05-20T07:47
93 schema:sdLicense https://scigraph.springernature.com/explorer/license/
94 schema:sdPublisher N996a93981e564f0e873dfdb4d5f99567
95 schema:url https://doi.org/10.1007/978-3-030-04585-2_42
96 sgo:license sg:explorer/license/
97 sgo:sdDataset chapters
98 rdf:type schema:Chapter
99 N11c65c8c72ca4d70a8499eb4ff73243e rdf:first sg:person.011761357566.69
100 rdf:rest rdf:nil
101 N125f090b1dfb4e1a831c89ed9b66c0c1 schema:familyName Zhao
102 schema:givenName Yong
103 rdf:type schema:Person
104 N12f3548fe380435685eb096083cbfc0b rdf:first sg:person.07734314457.36
105 rdf:rest N5aee185785194841aec7a63c625a592b
106 N26d8a0a6ea934cc4a5b7513ca1bfa393 rdf:first Nb547503ad1e240cea5d12de5973ffdaf
107 rdf:rest N983bd915d0504be8bb8336d760312a7e
108 N2a94c53ff1c74e92849b92094e78f261 schema:isbn 978-3-030-04584-5
109 978-3-030-04585-2
110 schema:name Advances in Smart Vehicular Technology, Transportation, Communication and Applications
111 rdf:type schema:Book
112 N3b7bd6203a7746a4b7c89e4c014da197 rdf:first N125f090b1dfb4e1a831c89ed9b66c0c1
113 rdf:rest N6dbcacc4caff4157b858c304e7b6644f
114 N4fccf923370f4ae09a0c729042480862 schema:familyName Wu
115 schema:givenName Tsu-Yang
116 rdf:type schema:Person
117 N5708df4205594197ac54448f29a48c8a schema:familyName Pan
118 schema:givenName Jeng-Shyang
119 rdf:type schema:Person
120 N5aee185785194841aec7a63c625a592b rdf:first sg:person.015412321734.60
121 rdf:rest Nfcad4616b4a14f08a98644e017f41b70
122 N6dbcacc4caff4157b858c304e7b6644f rdf:first N4fccf923370f4ae09a0c729042480862
123 rdf:rest N26d8a0a6ea934cc4a5b7513ca1bfa393
124 N983bd915d0504be8bb8336d760312a7e rdf:first N5708df4205594197ac54448f29a48c8a
125 rdf:rest Ne95f1f2a053a4c12b4b712dad65cd083
126 N996a93981e564f0e873dfdb4d5f99567 schema:name Springer Nature - SN SciGraph project
127 rdf:type schema:Organization
128 Nb4dea0b759b441578c628544f6b32424 schema:familyName Jain
129 schema:givenName Lakhmi C.
130 rdf:type schema:Person
131 Nb547503ad1e240cea5d12de5973ffdaf schema:familyName Chang
132 schema:givenName Tang-Hsien
133 rdf:type schema:Person
134 Nbee2ade314cc4ce59fc3e7f41fc6adaa schema:name doi
135 schema:value 10.1007/978-3-030-04585-2_42
136 rdf:type schema:PropertyValue
137 Nd8e71b21ff974d82b252fb7c9c8322cf schema:name Springer Nature
138 rdf:type schema:Organisation
139 Ne95f1f2a053a4c12b4b712dad65cd083 rdf:first Nb4dea0b759b441578c628544f6b32424
140 rdf:rest rdf:nil
141 Neae964c5f56a444cbf9716106fbe98aa schema:name dimensions_id
142 schema:value pub.1110320682
143 rdf:type schema:PropertyValue
144 Nfcad4616b4a14f08a98644e017f41b70 rdf:first sg:person.013276547461.46
145 rdf:rest N11c65c8c72ca4d70a8499eb4ff73243e
146 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
147 schema:name Engineering
148 rdf:type schema:DefinedTerm
149 anzsrc-for:0907 schema:inDefinedTermSet anzsrc-for:
150 schema:name Environmental Engineering
151 rdf:type schema:DefinedTerm
152 sg:person.011761357566.69 schema:affiliation grid-institutes:grid.411298.7
153 schema:familyName Huang
154 schema:givenName Chi-Chang
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011761357566.69
156 rdf:type schema:Person
157 sg:person.013276547461.46 schema:affiliation grid-institutes:grid.411298.7
158 schema:familyName Wu
159 schema:givenName Pei-Ju
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013276547461.46
161 rdf:type schema:Person
162 sg:person.015412321734.60 schema:affiliation grid-institutes:grid.411298.7
163 schema:familyName Lin
164 schema:givenName Liang-Tay
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015412321734.60
166 rdf:type schema:Person
167 sg:person.07734314457.36 schema:affiliation grid-institutes:grid.411298.7
168 schema:familyName Yeh
169 schema:givenName Chao-Fu
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07734314457.36
171 rdf:type schema:Person
172 grid-institutes:grid.411298.7 schema:alternateName Feng-Chia University, No. 100, Wenhua Rd. Xitun dist., Taichung, Taiwan
173 schema:name Feng-Chia University, No. 100, Wenhua Rd. Xitun dist., Taichung, Taiwan
174 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...