Ontology type: schema:Chapter
2018-12-01
AUTHORSChao-Fu Yeh , Liang-Tay Lin , Pei-Ju Wu , Chi-Chang Huang
ABSTRACTThe reduction of carbon use on the road traffic seems obviously to be a right direction and important strategy in the worldwide environment. In the road traffic, the bus operation belongs to a commercial vehicle related to longer travel time and distance, thus, it deserves to pay more attention on the fuel consumption of bus operation in order to reduce the air pollution emission and increase the energy-saving efficiency. Although bus transport systems contain huge operations data, there is little practical knowledge of how to make use of the data. Hence, this study aims to explore big data of bus transport systems and create valuable environmental operations strategies.Our research aims at using the second generations of on-board diagnostics system (OBD II) to output the real and dynamic data of engine oil consumption. Our research focus on the studying on the eco-driving behavior of bus based on the data from OBD II in order to improve the management of energy-saving for bus operators. In final, the results of research show that there is positive correlation in statistics between the speed, the engine temperature, the ambient air temperature, travel distance and energy consumption. These five variables are associated with the oil consumption. More... »
PAGES343-351
Advances in Smart Vehicular Technology, Transportation, Communication and Applications
ISBN
978-3-030-04584-5
978-3-030-04585-2
http://scigraph.springernature.com/pub.10.1007/978-3-030-04585-2_42
DOIhttp://dx.doi.org/10.1007/978-3-030-04585-2_42
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1110320682
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0907",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Environmental Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Feng-Chia University, No. 100, Wenhua Rd. Xitun dist., Taichung, Taiwan",
"id": "http://www.grid.ac/institutes/grid.411298.7",
"name": [
"Feng-Chia University, No. 100, Wenhua Rd. Xitun dist., Taichung, Taiwan"
],
"type": "Organization"
},
"familyName": "Yeh",
"givenName": "Chao-Fu",
"id": "sg:person.07734314457.36",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07734314457.36"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Feng-Chia University, No. 100, Wenhua Rd. Xitun dist., Taichung, Taiwan",
"id": "http://www.grid.ac/institutes/grid.411298.7",
"name": [
"Feng-Chia University, No. 100, Wenhua Rd. Xitun dist., Taichung, Taiwan"
],
"type": "Organization"
},
"familyName": "Lin",
"givenName": "Liang-Tay",
"id": "sg:person.015412321734.60",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015412321734.60"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Feng-Chia University, No. 100, Wenhua Rd. Xitun dist., Taichung, Taiwan",
"id": "http://www.grid.ac/institutes/grid.411298.7",
"name": [
"Feng-Chia University, No. 100, Wenhua Rd. Xitun dist., Taichung, Taiwan"
],
"type": "Organization"
},
"familyName": "Wu",
"givenName": "Pei-Ju",
"id": "sg:person.013276547461.46",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013276547461.46"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Feng-Chia University, No. 100, Wenhua Rd. Xitun dist., Taichung, Taiwan",
"id": "http://www.grid.ac/institutes/grid.411298.7",
"name": [
"Feng-Chia University, No. 100, Wenhua Rd. Xitun dist., Taichung, Taiwan"
],
"type": "Organization"
},
"familyName": "Huang",
"givenName": "Chi-Chang",
"id": "sg:person.011761357566.69",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011761357566.69"
],
"type": "Person"
}
],
"datePublished": "2018-12-01",
"datePublishedReg": "2018-12-01",
"description": "The reduction of carbon use on the road traffic seems obviously to be a right direction and important strategy in the worldwide environment. In the road traffic, the bus operation belongs to a commercial vehicle related to longer travel time and distance, thus, it deserves to pay more attention on the fuel consumption of bus operation in order to reduce the air pollution emission and increase the energy-saving efficiency. Although bus transport systems contain huge operations data, there is little practical knowledge of how to make use of the data. Hence, this study aims to explore big data of bus transport systems and create valuable environmental operations strategies.Our research aims at using the second generations of on-board diagnostics system (OBD II) to output the real and dynamic data of engine oil consumption. Our research focus on the studying on the eco-driving behavior of bus based on the data from OBD II in order to improve the management of energy-saving for bus operators. In final, the results of research show that there is positive correlation in statistics between the speed, the engine temperature, the ambient air temperature, travel distance and energy consumption. These five variables are associated with the oil consumption.",
"editor": [
{
"familyName": "Zhao",
"givenName": "Yong",
"type": "Person"
},
{
"familyName": "Wu",
"givenName": "Tsu-Yang",
"type": "Person"
},
{
"familyName": "Chang",
"givenName": "Tang-Hsien",
"type": "Person"
},
{
"familyName": "Pan",
"givenName": "Jeng-Shyang",
"type": "Person"
},
{
"familyName": "Jain",
"givenName": "Lakhmi C.",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-030-04585-2_42",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-030-04584-5",
"978-3-030-04585-2"
],
"name": "Advances in Smart Vehicular Technology, Transportation, Communication and Applications",
"type": "Book"
},
"keywords": [
"bus transport system",
"fuel consumption",
"On-Board Diagnostics Data",
"bus operations",
"engine oil consumption",
"energy-saving efficiency",
"board diagnostic system",
"little practical knowledge",
"behavior of buses",
"ambient air temperature",
"bus operators",
"engine temperature",
"oil consumption",
"road traffic",
"commercial vehicles",
"OBD-II",
"worldwide environment",
"operation strategy",
"research show",
"operation data",
"air pollution emissions",
"transport system",
"energy consumption",
"travel distance",
"pollution emissions",
"right direction",
"driving behavior",
"air temperature",
"practical knowledge",
"diagnostic system",
"more attention",
"big data",
"temperature",
"dynamic data",
"important strategy",
"operation",
"research focus",
"consumption",
"strategies",
"bus",
"vehicles",
"system",
"management",
"speed",
"behavior",
"efficiency",
"research",
"eco",
"emission",
"order",
"traffic",
"focus",
"variables",
"carbon use",
"distance",
"generation",
"data",
"direction",
"knowledge",
"attention",
"environment",
"use",
"second generation",
"reduction",
"diagnostic data",
"results",
"show",
"positive correlation",
"time",
"operators",
"study",
"statistics",
"correlation"
],
"name": "Using On-Board Diagnostics Data to Analyze Driving Behavior and Fuel Consumption",
"pagination": "343-351",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1110320682"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-030-04585-2_42"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-030-04585-2_42",
"https://app.dimensions.ai/details/publication/pub.1110320682"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:47",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_372.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-030-04585-2_42"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-04585-2_42'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-04585-2_42'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-04585-2_42'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-04585-2_42'
This table displays all metadata directly associated to this object as RDF triples.
174 TRIPLES
23 PREDICATES
98 URIs
91 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-030-04585-2_42 | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0907 |
3 | ″ | schema:author | N12f3548fe380435685eb096083cbfc0b |
4 | ″ | schema:datePublished | 2018-12-01 |
5 | ″ | schema:datePublishedReg | 2018-12-01 |
6 | ″ | schema:description | The reduction of carbon use on the road traffic seems obviously to be a right direction and important strategy in the worldwide environment. In the road traffic, the bus operation belongs to a commercial vehicle related to longer travel time and distance, thus, it deserves to pay more attention on the fuel consumption of bus operation in order to reduce the air pollution emission and increase the energy-saving efficiency. Although bus transport systems contain huge operations data, there is little practical knowledge of how to make use of the data. Hence, this study aims to explore big data of bus transport systems and create valuable environmental operations strategies.Our research aims at using the second generations of on-board diagnostics system (OBD II) to output the real and dynamic data of engine oil consumption. Our research focus on the studying on the eco-driving behavior of bus based on the data from OBD II in order to improve the management of energy-saving for bus operators. In final, the results of research show that there is positive correlation in statistics between the speed, the engine temperature, the ambient air temperature, travel distance and energy consumption. These five variables are associated with the oil consumption. |
7 | ″ | schema:editor | N3b7bd6203a7746a4b7c89e4c014da197 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N2a94c53ff1c74e92849b92094e78f261 |
12 | ″ | schema:keywords | OBD-II |
13 | ″ | ″ | On-Board Diagnostics Data |
14 | ″ | ″ | air pollution emissions |
15 | ″ | ″ | air temperature |
16 | ″ | ″ | ambient air temperature |
17 | ″ | ″ | attention |
18 | ″ | ″ | behavior |
19 | ″ | ″ | behavior of buses |
20 | ″ | ″ | big data |
21 | ″ | ″ | board diagnostic system |
22 | ″ | ″ | bus |
23 | ″ | ″ | bus operations |
24 | ″ | ″ | bus operators |
25 | ″ | ″ | bus transport system |
26 | ″ | ″ | carbon use |
27 | ″ | ″ | commercial vehicles |
28 | ″ | ″ | consumption |
29 | ″ | ″ | correlation |
30 | ″ | ″ | data |
31 | ″ | ″ | diagnostic data |
32 | ″ | ″ | diagnostic system |
33 | ″ | ″ | direction |
34 | ″ | ″ | distance |
35 | ″ | ″ | driving behavior |
36 | ″ | ″ | dynamic data |
37 | ″ | ″ | eco |
38 | ″ | ″ | efficiency |
39 | ″ | ″ | emission |
40 | ″ | ″ | energy consumption |
41 | ″ | ″ | energy-saving efficiency |
42 | ″ | ″ | engine oil consumption |
43 | ″ | ″ | engine temperature |
44 | ″ | ″ | environment |
45 | ″ | ″ | focus |
46 | ″ | ″ | fuel consumption |
47 | ″ | ″ | generation |
48 | ″ | ″ | important strategy |
49 | ″ | ″ | knowledge |
50 | ″ | ″ | little practical knowledge |
51 | ″ | ″ | management |
52 | ″ | ″ | more attention |
53 | ″ | ″ | oil consumption |
54 | ″ | ″ | operation |
55 | ″ | ″ | operation data |
56 | ″ | ″ | operation strategy |
57 | ″ | ″ | operators |
58 | ″ | ″ | order |
59 | ″ | ″ | pollution emissions |
60 | ″ | ″ | positive correlation |
61 | ″ | ″ | practical knowledge |
62 | ″ | ″ | reduction |
63 | ″ | ″ | research |
64 | ″ | ″ | research focus |
65 | ″ | ″ | research show |
66 | ″ | ″ | results |
67 | ″ | ″ | right direction |
68 | ″ | ″ | road traffic |
69 | ″ | ″ | second generation |
70 | ″ | ″ | show |
71 | ″ | ″ | speed |
72 | ″ | ″ | statistics |
73 | ″ | ″ | strategies |
74 | ″ | ″ | study |
75 | ″ | ″ | system |
76 | ″ | ″ | temperature |
77 | ″ | ″ | time |
78 | ″ | ″ | traffic |
79 | ″ | ″ | transport system |
80 | ″ | ″ | travel distance |
81 | ″ | ″ | use |
82 | ″ | ″ | variables |
83 | ″ | ″ | vehicles |
84 | ″ | ″ | worldwide environment |
85 | ″ | schema:name | Using On-Board Diagnostics Data to Analyze Driving Behavior and Fuel Consumption |
86 | ″ | schema:pagination | 343-351 |
87 | ″ | schema:productId | Nbee2ade314cc4ce59fc3e7f41fc6adaa |
88 | ″ | ″ | Neae964c5f56a444cbf9716106fbe98aa |
89 | ″ | schema:publisher | Nd8e71b21ff974d82b252fb7c9c8322cf |
90 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1110320682 |
91 | ″ | ″ | https://doi.org/10.1007/978-3-030-04585-2_42 |
92 | ″ | schema:sdDatePublished | 2022-05-20T07:47 |
93 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
94 | ″ | schema:sdPublisher | N996a93981e564f0e873dfdb4d5f99567 |
95 | ″ | schema:url | https://doi.org/10.1007/978-3-030-04585-2_42 |
96 | ″ | sgo:license | sg:explorer/license/ |
97 | ″ | sgo:sdDataset | chapters |
98 | ″ | rdf:type | schema:Chapter |
99 | N11c65c8c72ca4d70a8499eb4ff73243e | rdf:first | sg:person.011761357566.69 |
100 | ″ | rdf:rest | rdf:nil |
101 | N125f090b1dfb4e1a831c89ed9b66c0c1 | schema:familyName | Zhao |
102 | ″ | schema:givenName | Yong |
103 | ″ | rdf:type | schema:Person |
104 | N12f3548fe380435685eb096083cbfc0b | rdf:first | sg:person.07734314457.36 |
105 | ″ | rdf:rest | N5aee185785194841aec7a63c625a592b |
106 | N26d8a0a6ea934cc4a5b7513ca1bfa393 | rdf:first | Nb547503ad1e240cea5d12de5973ffdaf |
107 | ″ | rdf:rest | N983bd915d0504be8bb8336d760312a7e |
108 | N2a94c53ff1c74e92849b92094e78f261 | schema:isbn | 978-3-030-04584-5 |
109 | ″ | ″ | 978-3-030-04585-2 |
110 | ″ | schema:name | Advances in Smart Vehicular Technology, Transportation, Communication and Applications |
111 | ″ | rdf:type | schema:Book |
112 | N3b7bd6203a7746a4b7c89e4c014da197 | rdf:first | N125f090b1dfb4e1a831c89ed9b66c0c1 |
113 | ″ | rdf:rest | N6dbcacc4caff4157b858c304e7b6644f |
114 | N4fccf923370f4ae09a0c729042480862 | schema:familyName | Wu |
115 | ″ | schema:givenName | Tsu-Yang |
116 | ″ | rdf:type | schema:Person |
117 | N5708df4205594197ac54448f29a48c8a | schema:familyName | Pan |
118 | ″ | schema:givenName | Jeng-Shyang |
119 | ″ | rdf:type | schema:Person |
120 | N5aee185785194841aec7a63c625a592b | rdf:first | sg:person.015412321734.60 |
121 | ″ | rdf:rest | Nfcad4616b4a14f08a98644e017f41b70 |
122 | N6dbcacc4caff4157b858c304e7b6644f | rdf:first | N4fccf923370f4ae09a0c729042480862 |
123 | ″ | rdf:rest | N26d8a0a6ea934cc4a5b7513ca1bfa393 |
124 | N983bd915d0504be8bb8336d760312a7e | rdf:first | N5708df4205594197ac54448f29a48c8a |
125 | ″ | rdf:rest | Ne95f1f2a053a4c12b4b712dad65cd083 |
126 | N996a93981e564f0e873dfdb4d5f99567 | schema:name | Springer Nature - SN SciGraph project |
127 | ″ | rdf:type | schema:Organization |
128 | Nb4dea0b759b441578c628544f6b32424 | schema:familyName | Jain |
129 | ″ | schema:givenName | Lakhmi C. |
130 | ″ | rdf:type | schema:Person |
131 | Nb547503ad1e240cea5d12de5973ffdaf | schema:familyName | Chang |
132 | ″ | schema:givenName | Tang-Hsien |
133 | ″ | rdf:type | schema:Person |
134 | Nbee2ade314cc4ce59fc3e7f41fc6adaa | schema:name | doi |
135 | ″ | schema:value | 10.1007/978-3-030-04585-2_42 |
136 | ″ | rdf:type | schema:PropertyValue |
137 | Nd8e71b21ff974d82b252fb7c9c8322cf | schema:name | Springer Nature |
138 | ″ | rdf:type | schema:Organisation |
139 | Ne95f1f2a053a4c12b4b712dad65cd083 | rdf:first | Nb4dea0b759b441578c628544f6b32424 |
140 | ″ | rdf:rest | rdf:nil |
141 | Neae964c5f56a444cbf9716106fbe98aa | schema:name | dimensions_id |
142 | ″ | schema:value | pub.1110320682 |
143 | ″ | rdf:type | schema:PropertyValue |
144 | Nfcad4616b4a14f08a98644e017f41b70 | rdf:first | sg:person.013276547461.46 |
145 | ″ | rdf:rest | N11c65c8c72ca4d70a8499eb4ff73243e |
146 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
147 | ″ | schema:name | Engineering |
148 | ″ | rdf:type | schema:DefinedTerm |
149 | anzsrc-for:0907 | schema:inDefinedTermSet | anzsrc-for: |
150 | ″ | schema:name | Environmental Engineering |
151 | ″ | rdf:type | schema:DefinedTerm |
152 | sg:person.011761357566.69 | schema:affiliation | grid-institutes:grid.411298.7 |
153 | ″ | schema:familyName | Huang |
154 | ″ | schema:givenName | Chi-Chang |
155 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011761357566.69 |
156 | ″ | rdf:type | schema:Person |
157 | sg:person.013276547461.46 | schema:affiliation | grid-institutes:grid.411298.7 |
158 | ″ | schema:familyName | Wu |
159 | ″ | schema:givenName | Pei-Ju |
160 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013276547461.46 |
161 | ″ | rdf:type | schema:Person |
162 | sg:person.015412321734.60 | schema:affiliation | grid-institutes:grid.411298.7 |
163 | ″ | schema:familyName | Lin |
164 | ″ | schema:givenName | Liang-Tay |
165 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015412321734.60 |
166 | ″ | rdf:type | schema:Person |
167 | sg:person.07734314457.36 | schema:affiliation | grid-institutes:grid.411298.7 |
168 | ″ | schema:familyName | Yeh |
169 | ″ | schema:givenName | Chao-Fu |
170 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07734314457.36 |
171 | ″ | rdf:type | schema:Person |
172 | grid-institutes:grid.411298.7 | schema:alternateName | Feng-Chia University, No. 100, Wenhua Rd. Xitun dist., Taichung, Taiwan |
173 | ″ | schema:name | Feng-Chia University, No. 100, Wenhua Rd. Xitun dist., Taichung, Taiwan |
174 | ″ | rdf:type | schema:Organization |