Information-Theoretic Secret-Key Agreement: The Asymptotically Tight Relation Between the Secret-Key Rate and the Channel Quality Ratio View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-11-04

AUTHORS

Daniel Jost , Ueli Maurer , João L. Ribeiro

ABSTRACT

Information-theoretic secret-key agreement between two parties Alice and Bob is a well-studied problem that is provably impossible in a plain model with public (authenticated) communication, but is known to be possible in a model where the parties also have access to some correlated randomness. One particular type of such correlated randomness is the so-called satellite setting, where uniform random bits (e.g., sent by a satellite) are received by the parties and the adversary Eve over inherently noisy channels. The antenna size determines the error probability, and the antenna is the adversary’s limiting resource much as computing power is the limiting resource in traditional complexity-based security. The natural assumption about the adversary is that her antenna is at most Q times larger than both Alice’s and Bob’s antenna, where, to be realistic, Q can be very large.The goal of this paper is to characterize the secret-key rate per transmitted bit in terms of Q. Traditional results in this so-called satellite setting are phrased in terms of the error probabilities ϵA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _A$$\end{document}, ϵB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _B$$\end{document}, and ϵE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _E$$\end{document}, of the binary symmetric channels through which the parties receive the bits and, quite surprisingly, the secret-key rate has been shown to be strictly positive unless Eve’s channel is perfect (ϵE=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _E=0$$\end{document}) or either Alice’s or Bob’s channel output is independent of the transmitted bit (i.e., ϵA=0.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _A=0.5$$\end{document} or ϵB=0.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _B=0.5$$\end{document}). However, the best proven lower bound, if interpreted in terms of the channel quality ratio Q, is only exponentially small in Q. The main result of this paper is that the secret-key rate decreases asymptotically only like 1/Q2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/Q^2$$\end{document} if the per-bit signal energy, affecting the quality of all channels, is treated as a system parameter that can be optimized. Moreover, this bound is tight if Alice and Bob have the same antenna sizes.Motivated by considering a fixed sending signal power, in which case the per-bit energy is inversely proportional to the bit-rate, we also propose a definition of the secret-key rate per second (rather than per transmitted bit) and prove that it decreases asymptotically only like 1/Q. More... »

PAGES

345-369

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-03807-6_13

DOI

http://dx.doi.org/10.1007/978-3-030-03807-6_13

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1108021190


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1005", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Communications Technologies", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, ETH Zurich, 8092, Zurich, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "Department of Computer Science, ETH Zurich, 8092, Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jost", 
        "givenName": "Daniel", 
        "id": "sg:person.013356446515.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013356446515.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, ETH Zurich, 8092, Zurich, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "Department of Computer Science, ETH Zurich, 8092, Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maurer", 
        "givenName": "Ueli", 
        "id": "sg:person.01316567627.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316567627.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computing, Imperial College London, SW7 2AZ, London, UK", 
          "id": "http://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Department of Computing, Imperial College London, SW7 2AZ, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ribeiro", 
        "givenName": "Jo\u00e3o L.", 
        "id": "sg:person.013534504433.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013534504433.63"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2018-11-04", 
    "datePublishedReg": "2018-11-04", 
    "description": "Information-theoretic secret-key agreement between two parties Alice and Bob is a well-studied problem that is provably impossible in a plain model with public (authenticated) communication, but is known to be possible in a model where the parties also have access to some correlated randomness. One particular type of such correlated randomness is the so-called satellite setting, where uniform random bits (e.g., sent by a satellite) are received by the parties and the adversary Eve over inherently noisy channels. The antenna size determines the error probability, and the antenna is the adversary\u2019s limiting resource much as computing power is the limiting resource in traditional complexity-based security. The natural assumption about the adversary is that her antenna is at most Q times larger than both Alice\u2019s and Bob\u2019s antenna, where, to be realistic, Q can be very large.The goal of this paper is to characterize the secret-key rate per transmitted bit in terms of Q. Traditional results in this so-called satellite setting are phrased in terms of the error probabilities \u03f5A\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\epsilon _A$$\\end{document}, \u03f5B\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\epsilon _B$$\\end{document}, and \u03f5E\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\epsilon _E$$\\end{document}, of the binary symmetric channels through which the parties receive the bits and, quite surprisingly, the secret-key rate has been shown to be strictly positive unless Eve\u2019s channel is perfect (\u03f5E=0\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\epsilon _E=0$$\\end{document}) or either Alice\u2019s or Bob\u2019s channel output is independent of the transmitted bit (i.e., \u03f5A=0.5\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\epsilon _A=0.5$$\\end{document} or \u03f5B=0.5\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\epsilon _B=0.5$$\\end{document}). However, the best proven lower bound, if interpreted in terms of the channel quality ratio Q, is only exponentially small in Q. The main result of this paper is that the secret-key rate decreases asymptotically only like 1/Q2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$1/Q^2$$\\end{document} if the per-bit signal energy, affecting the quality of all channels, is treated as a system parameter that can be optimized. Moreover, this bound is tight if Alice and Bob have the same antenna sizes.Motivated by considering a fixed sending signal power, in which case the per-bit energy is inversely proportional to the bit-rate, we also propose a definition of the secret-key rate per second (rather than per transmitted bit) and prove that it decreases asymptotically only like 1/Q.", 
    "editor": [
      {
        "familyName": "Beimel", 
        "givenName": "Amos", 
        "type": "Person"
      }, 
      {
        "familyName": "Dziembowski", 
        "givenName": "Stefan", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-03807-6_13", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-03806-9", 
        "978-3-030-03807-6"
      ], 
      "name": "Theory of Cryptography", 
      "type": "Book"
    }, 
    "keywords": [
      "Information-theoretic secret-key agreement", 
      "correlated randomness", 
      "Such correlated randomness", 
      "satellite setting", 
      "secret key rate", 
      "adversary Eve", 
      "secret key agreement", 
      "binary symmetric channel", 
      "plain model", 
      "Eve's channel", 
      "noisy channels", 
      "channel output", 
      "adversary", 
      "random bits", 
      "symmetric channel", 
      "bits", 
      "parties Alice", 
      "error probability", 
      "Alice", 
      "system parameters", 
      "resources", 
      "security", 
      "same antenna size", 
      "signal energy", 
      "randomness", 
      "Bob", 
      "communication", 
      "parties", 
      "channels", 
      "particular type", 
      "access", 
      "model", 
      "traditional results", 
      "signal power", 
      "tight relation", 
      "terms", 
      "quality ratio", 
      "error", 
      "goal", 
      "bit energy", 
      "natural assumptions", 
      "power", 
      "output", 
      "quality", 
      "public communication", 
      "definition", 
      "results", 
      "probability", 
      "setting", 
      "time", 
      "assumption", 
      "antenna", 
      "size", 
      "main results", 
      "Eve", 
      "parameters", 
      "types", 
      "rate", 
      "cases", 
      "antenna size", 
      "energy", 
      "relation", 
      "ratio", 
      "agreement", 
      "paper", 
      "problem", 
      "ratio q"
    ], 
    "name": "Information-Theoretic Secret-Key Agreement: The Asymptotically Tight Relation Between the Secret-Key Rate and the Channel Quality Ratio", 
    "pagination": "345-369", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1108021190"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-03807-6_13"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-03807-6_13", 
      "https://app.dimensions.ai/details/publication/pub.1108021190"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_185.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-030-03807-6_13"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-03807-6_13'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-03807-6_13'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-03807-6_13'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-03807-6_13'


 

This table displays all metadata directly associated to this object as RDF triples.

149 TRIPLES      23 PREDICATES      92 URIs      85 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-03807-6_13 schema:about anzsrc-for:10
2 anzsrc-for:1005
3 schema:author Nf3e34d9d2db743df84450991f3f29698
4 schema:datePublished 2018-11-04
5 schema:datePublishedReg 2018-11-04
6 schema:description Information-theoretic secret-key agreement between two parties Alice and Bob is a well-studied problem that is provably impossible in a plain model with public (authenticated) communication, but is known to be possible in a model where the parties also have access to some correlated randomness. One particular type of such correlated randomness is the so-called satellite setting, where uniform random bits (e.g., sent by a satellite) are received by the parties and the adversary Eve over inherently noisy channels. The antenna size determines the error probability, and the antenna is the adversary’s limiting resource much as computing power is the limiting resource in traditional complexity-based security. The natural assumption about the adversary is that her antenna is at most Q times larger than both Alice’s and Bob’s antenna, where, to be realistic, Q can be very large.The goal of this paper is to characterize the secret-key rate per transmitted bit in terms of Q. Traditional results in this so-called satellite setting are phrased in terms of the error probabilities ϵA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _A$$\end{document}, ϵB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _B$$\end{document}, and ϵE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _E$$\end{document}, of the binary symmetric channels through which the parties receive the bits and, quite surprisingly, the secret-key rate has been shown to be strictly positive unless Eve’s channel is perfect (ϵE=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _E=0$$\end{document}) or either Alice’s or Bob’s channel output is independent of the transmitted bit (i.e., ϵA=0.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _A=0.5$$\end{document} or ϵB=0.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _B=0.5$$\end{document}). However, the best proven lower bound, if interpreted in terms of the channel quality ratio Q, is only exponentially small in Q. The main result of this paper is that the secret-key rate decreases asymptotically only like 1/Q2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/Q^2$$\end{document} if the per-bit signal energy, affecting the quality of all channels, is treated as a system parameter that can be optimized. Moreover, this bound is tight if Alice and Bob have the same antenna sizes.Motivated by considering a fixed sending signal power, in which case the per-bit energy is inversely proportional to the bit-rate, we also propose a definition of the secret-key rate per second (rather than per transmitted bit) and prove that it decreases asymptotically only like 1/Q.
7 schema:editor N0275a0586680449890346fd158fb4775
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nfb7b71af26a848fe8dad4bb14da58355
12 schema:keywords Alice
13 Bob
14 Eve
15 Eve's channel
16 Information-theoretic secret-key agreement
17 Such correlated randomness
18 access
19 adversary
20 adversary Eve
21 agreement
22 antenna
23 antenna size
24 assumption
25 binary symmetric channel
26 bit energy
27 bits
28 cases
29 channel output
30 channels
31 communication
32 correlated randomness
33 definition
34 energy
35 error
36 error probability
37 goal
38 main results
39 model
40 natural assumptions
41 noisy channels
42 output
43 paper
44 parameters
45 particular type
46 parties
47 parties Alice
48 plain model
49 power
50 probability
51 problem
52 public communication
53 quality
54 quality ratio
55 random bits
56 randomness
57 rate
58 ratio
59 ratio q
60 relation
61 resources
62 results
63 same antenna size
64 satellite setting
65 secret key agreement
66 secret key rate
67 security
68 setting
69 signal energy
70 signal power
71 size
72 symmetric channel
73 system parameters
74 terms
75 tight relation
76 time
77 traditional results
78 types
79 schema:name Information-Theoretic Secret-Key Agreement: The Asymptotically Tight Relation Between the Secret-Key Rate and the Channel Quality Ratio
80 schema:pagination 345-369
81 schema:productId N5d370332d4504449b9c2a54352fa24f7
82 N860dee3a28b14d33b820dd6c65b96cad
83 schema:publisher N3c93a71ab06f46b8a3688b97af3fc5b0
84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108021190
85 https://doi.org/10.1007/978-3-030-03807-6_13
86 schema:sdDatePublished 2022-05-20T07:43
87 schema:sdLicense https://scigraph.springernature.com/explorer/license/
88 schema:sdPublisher N05f543f876d044a6b8c8d758604defa2
89 schema:url https://doi.org/10.1007/978-3-030-03807-6_13
90 sgo:license sg:explorer/license/
91 sgo:sdDataset chapters
92 rdf:type schema:Chapter
93 N0275a0586680449890346fd158fb4775 rdf:first N332154849049422b8d7538ed8412bf2f
94 rdf:rest N3d5b4b8a28fd453e82c87542c5e4a61b
95 N05f543f876d044a6b8c8d758604defa2 schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 N272bb408324441f5a161da5dc93fe667 schema:familyName Dziembowski
98 schema:givenName Stefan
99 rdf:type schema:Person
100 N332154849049422b8d7538ed8412bf2f schema:familyName Beimel
101 schema:givenName Amos
102 rdf:type schema:Person
103 N3c93a71ab06f46b8a3688b97af3fc5b0 schema:name Springer Nature
104 rdf:type schema:Organisation
105 N3d5b4b8a28fd453e82c87542c5e4a61b rdf:first N272bb408324441f5a161da5dc93fe667
106 rdf:rest rdf:nil
107 N5d370332d4504449b9c2a54352fa24f7 schema:name doi
108 schema:value 10.1007/978-3-030-03807-6_13
109 rdf:type schema:PropertyValue
110 N6e41549caaed44f28a1d6bb53823d407 rdf:first sg:person.013534504433.63
111 rdf:rest rdf:nil
112 N860dee3a28b14d33b820dd6c65b96cad schema:name dimensions_id
113 schema:value pub.1108021190
114 rdf:type schema:PropertyValue
115 Nf2ff3be6e3684402ad8c2b72ba2f84d3 rdf:first sg:person.01316567627.91
116 rdf:rest N6e41549caaed44f28a1d6bb53823d407
117 Nf3e34d9d2db743df84450991f3f29698 rdf:first sg:person.013356446515.02
118 rdf:rest Nf2ff3be6e3684402ad8c2b72ba2f84d3
119 Nfb7b71af26a848fe8dad4bb14da58355 schema:isbn 978-3-030-03806-9
120 978-3-030-03807-6
121 schema:name Theory of Cryptography
122 rdf:type schema:Book
123 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
124 schema:name Technology
125 rdf:type schema:DefinedTerm
126 anzsrc-for:1005 schema:inDefinedTermSet anzsrc-for:
127 schema:name Communications Technologies
128 rdf:type schema:DefinedTerm
129 sg:person.01316567627.91 schema:affiliation grid-institutes:grid.5801.c
130 schema:familyName Maurer
131 schema:givenName Ueli
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316567627.91
133 rdf:type schema:Person
134 sg:person.013356446515.02 schema:affiliation grid-institutes:grid.5801.c
135 schema:familyName Jost
136 schema:givenName Daniel
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013356446515.02
138 rdf:type schema:Person
139 sg:person.013534504433.63 schema:affiliation grid-institutes:grid.7445.2
140 schema:familyName Ribeiro
141 schema:givenName João L.
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013534504433.63
143 rdf:type schema:Person
144 grid-institutes:grid.5801.c schema:alternateName Department of Computer Science, ETH Zurich, 8092, Zurich, Switzerland
145 schema:name Department of Computer Science, ETH Zurich, 8092, Zurich, Switzerland
146 rdf:type schema:Organization
147 grid-institutes:grid.7445.2 schema:alternateName Department of Computing, Imperial College London, SW7 2AZ, London, UK
148 schema:name Department of Computing, Imperial College London, SW7 2AZ, London, UK
149 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...