Ontology type: schema:Chapter
2018-11-04
AUTHORSDaniel Jost , Ueli Maurer , João L. Ribeiro
ABSTRACTInformation-theoretic secret-key agreement between two parties Alice and Bob is a well-studied problem that is provably impossible in a plain model with public (authenticated) communication, but is known to be possible in a model where the parties also have access to some correlated randomness. One particular type of such correlated randomness is the so-called satellite setting, where uniform random bits (e.g., sent by a satellite) are received by the parties and the adversary Eve over inherently noisy channels. The antenna size determines the error probability, and the antenna is the adversary’s limiting resource much as computing power is the limiting resource in traditional complexity-based security. The natural assumption about the adversary is that her antenna is at most Q times larger than both Alice’s and Bob’s antenna, where, to be realistic, Q can be very large.The goal of this paper is to characterize the secret-key rate per transmitted bit in terms of Q. Traditional results in this so-called satellite setting are phrased in terms of the error probabilities ϵA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _A$$\end{document}, ϵB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _B$$\end{document}, and ϵE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _E$$\end{document}, of the binary symmetric channels through which the parties receive the bits and, quite surprisingly, the secret-key rate has been shown to be strictly positive unless Eve’s channel is perfect (ϵE=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _E=0$$\end{document}) or either Alice’s or Bob’s channel output is independent of the transmitted bit (i.e., ϵA=0.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _A=0.5$$\end{document} or ϵB=0.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _B=0.5$$\end{document}). However, the best proven lower bound, if interpreted in terms of the channel quality ratio Q, is only exponentially small in Q. The main result of this paper is that the secret-key rate decreases asymptotically only like 1/Q2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/Q^2$$\end{document} if the per-bit signal energy, affecting the quality of all channels, is treated as a system parameter that can be optimized. Moreover, this bound is tight if Alice and Bob have the same antenna sizes.Motivated by considering a fixed sending signal power, in which case the per-bit energy is inversely proportional to the bit-rate, we also propose a definition of the secret-key rate per second (rather than per transmitted bit) and prove that it decreases asymptotically only like 1/Q. More... »
PAGES345-369
Theory of Cryptography
ISBN
978-3-030-03806-9
978-3-030-03807-6
http://scigraph.springernature.com/pub.10.1007/978-3-030-03807-6_13
DOIhttp://dx.doi.org/10.1007/978-3-030-03807-6_13
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1108021190
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Technology",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1005",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Communications Technologies",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Computer Science, ETH Zurich, 8092, Zurich, Switzerland",
"id": "http://www.grid.ac/institutes/grid.5801.c",
"name": [
"Department of Computer Science, ETH Zurich, 8092, Zurich, Switzerland"
],
"type": "Organization"
},
"familyName": "Jost",
"givenName": "Daniel",
"id": "sg:person.013356446515.02",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013356446515.02"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Computer Science, ETH Zurich, 8092, Zurich, Switzerland",
"id": "http://www.grid.ac/institutes/grid.5801.c",
"name": [
"Department of Computer Science, ETH Zurich, 8092, Zurich, Switzerland"
],
"type": "Organization"
},
"familyName": "Maurer",
"givenName": "Ueli",
"id": "sg:person.01316567627.91",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316567627.91"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Computing, Imperial College London, SW7 2AZ, London, UK",
"id": "http://www.grid.ac/institutes/grid.7445.2",
"name": [
"Department of Computing, Imperial College London, SW7 2AZ, London, UK"
],
"type": "Organization"
},
"familyName": "Ribeiro",
"givenName": "Jo\u00e3o L.",
"id": "sg:person.013534504433.63",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013534504433.63"
],
"type": "Person"
}
],
"datePublished": "2018-11-04",
"datePublishedReg": "2018-11-04",
"description": "Information-theoretic secret-key agreement between two parties Alice and Bob is a well-studied problem that is provably impossible in a plain model with public (authenticated) communication, but is known to be possible in a model where the parties also have access to some correlated randomness. One particular type of such correlated randomness is the so-called satellite setting, where uniform random bits (e.g., sent by a satellite) are received by the parties and the adversary Eve over inherently noisy channels. The antenna size determines the error probability, and the antenna is the adversary\u2019s limiting resource much as computing power is the limiting resource in traditional complexity-based security. The natural assumption about the adversary is that her antenna is at most Q times larger than both Alice\u2019s and Bob\u2019s antenna, where, to be realistic, Q can be very large.The goal of this paper is to characterize the secret-key rate per transmitted bit in terms of Q. Traditional results in this so-called satellite setting are phrased in terms of the error probabilities \u03f5A\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\epsilon _A$$\\end{document}, \u03f5B\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\epsilon _B$$\\end{document}, and \u03f5E\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\epsilon _E$$\\end{document}, of the binary symmetric channels through which the parties receive the bits and, quite surprisingly, the secret-key rate has been shown to be strictly positive unless Eve\u2019s channel is perfect (\u03f5E=0\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\epsilon _E=0$$\\end{document}) or either Alice\u2019s or Bob\u2019s channel output is independent of the transmitted bit (i.e., \u03f5A=0.5\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\epsilon _A=0.5$$\\end{document} or \u03f5B=0.5\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\epsilon _B=0.5$$\\end{document}). However, the best proven lower bound, if interpreted in terms of the channel quality ratio Q, is only exponentially small in Q. The main result of this paper is that the secret-key rate decreases asymptotically only like 1/Q2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$1/Q^2$$\\end{document} if the per-bit signal energy, affecting the quality of all channels, is treated as a system parameter that can be optimized. Moreover, this bound is tight if Alice and Bob have the same antenna sizes.Motivated by considering a fixed sending signal power, in which case the per-bit energy is inversely proportional to the bit-rate, we also propose a definition of the secret-key rate per second (rather than per transmitted bit) and prove that it decreases asymptotically only like 1/Q.",
"editor": [
{
"familyName": "Beimel",
"givenName": "Amos",
"type": "Person"
},
{
"familyName": "Dziembowski",
"givenName": "Stefan",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-030-03807-6_13",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-030-03806-9",
"978-3-030-03807-6"
],
"name": "Theory of Cryptography",
"type": "Book"
},
"keywords": [
"Information-theoretic secret-key agreement",
"correlated randomness",
"Such correlated randomness",
"satellite setting",
"secret key rate",
"adversary Eve",
"secret key agreement",
"binary symmetric channel",
"plain model",
"Eve's channel",
"noisy channels",
"channel output",
"adversary",
"random bits",
"symmetric channel",
"bits",
"parties Alice",
"error probability",
"Alice",
"system parameters",
"resources",
"security",
"same antenna size",
"signal energy",
"randomness",
"Bob",
"communication",
"parties",
"channels",
"particular type",
"access",
"model",
"traditional results",
"signal power",
"tight relation",
"terms",
"quality ratio",
"error",
"goal",
"bit energy",
"natural assumptions",
"power",
"output",
"quality",
"public communication",
"definition",
"results",
"probability",
"setting",
"time",
"assumption",
"antenna",
"size",
"main results",
"Eve",
"parameters",
"types",
"rate",
"cases",
"antenna size",
"energy",
"relation",
"ratio",
"agreement",
"paper",
"problem",
"ratio q"
],
"name": "Information-Theoretic Secret-Key Agreement: The Asymptotically Tight Relation Between the Secret-Key Rate and the Channel Quality Ratio",
"pagination": "345-369",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1108021190"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-030-03807-6_13"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-030-03807-6_13",
"https://app.dimensions.ai/details/publication/pub.1108021190"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:43",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_185.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-030-03807-6_13"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-03807-6_13'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-03807-6_13'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-03807-6_13'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-03807-6_13'
This table displays all metadata directly associated to this object as RDF triples.
149 TRIPLES
23 PREDICATES
92 URIs
85 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-030-03807-6_13 | schema:about | anzsrc-for:10 |
2 | ″ | ″ | anzsrc-for:1005 |
3 | ″ | schema:author | Nf3e34d9d2db743df84450991f3f29698 |
4 | ″ | schema:datePublished | 2018-11-04 |
5 | ″ | schema:datePublishedReg | 2018-11-04 |
6 | ″ | schema:description | Information-theoretic secret-key agreement between two parties Alice and Bob is a well-studied problem that is provably impossible in a plain model with public (authenticated) communication, but is known to be possible in a model where the parties also have access to some correlated randomness. One particular type of such correlated randomness is the so-called satellite setting, where uniform random bits (e.g., sent by a satellite) are received by the parties and the adversary Eve over inherently noisy channels. The antenna size determines the error probability, and the antenna is the adversary’s limiting resource much as computing power is the limiting resource in traditional complexity-based security. The natural assumption about the adversary is that her antenna is at most Q times larger than both Alice’s and Bob’s antenna, where, to be realistic, Q can be very large.The goal of this paper is to characterize the secret-key rate per transmitted bit in terms of Q. Traditional results in this so-called satellite setting are phrased in terms of the error probabilities ϵA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _A$$\end{document}, ϵB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _B$$\end{document}, and ϵE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _E$$\end{document}, of the binary symmetric channels through which the parties receive the bits and, quite surprisingly, the secret-key rate has been shown to be strictly positive unless Eve’s channel is perfect (ϵE=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _E=0$$\end{document}) or either Alice’s or Bob’s channel output is independent of the transmitted bit (i.e., ϵA=0.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _A=0.5$$\end{document} or ϵB=0.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _B=0.5$$\end{document}). However, the best proven lower bound, if interpreted in terms of the channel quality ratio Q, is only exponentially small in Q. The main result of this paper is that the secret-key rate decreases asymptotically only like 1/Q2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/Q^2$$\end{document} if the per-bit signal energy, affecting the quality of all channels, is treated as a system parameter that can be optimized. Moreover, this bound is tight if Alice and Bob have the same antenna sizes.Motivated by considering a fixed sending signal power, in which case the per-bit energy is inversely proportional to the bit-rate, we also propose a definition of the secret-key rate per second (rather than per transmitted bit) and prove that it decreases asymptotically only like 1/Q. |
7 | ″ | schema:editor | N0275a0586680449890346fd158fb4775 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | Nfb7b71af26a848fe8dad4bb14da58355 |
12 | ″ | schema:keywords | Alice |
13 | ″ | ″ | Bob |
14 | ″ | ″ | Eve |
15 | ″ | ″ | Eve's channel |
16 | ″ | ″ | Information-theoretic secret-key agreement |
17 | ″ | ″ | Such correlated randomness |
18 | ″ | ″ | access |
19 | ″ | ″ | adversary |
20 | ″ | ″ | adversary Eve |
21 | ″ | ″ | agreement |
22 | ″ | ″ | antenna |
23 | ″ | ″ | antenna size |
24 | ″ | ″ | assumption |
25 | ″ | ″ | binary symmetric channel |
26 | ″ | ″ | bit energy |
27 | ″ | ″ | bits |
28 | ″ | ″ | cases |
29 | ″ | ″ | channel output |
30 | ″ | ″ | channels |
31 | ″ | ″ | communication |
32 | ″ | ″ | correlated randomness |
33 | ″ | ″ | definition |
34 | ″ | ″ | energy |
35 | ″ | ″ | error |
36 | ″ | ″ | error probability |
37 | ″ | ″ | goal |
38 | ″ | ″ | main results |
39 | ″ | ″ | model |
40 | ″ | ″ | natural assumptions |
41 | ″ | ″ | noisy channels |
42 | ″ | ″ | output |
43 | ″ | ″ | paper |
44 | ″ | ″ | parameters |
45 | ″ | ″ | particular type |
46 | ″ | ″ | parties |
47 | ″ | ″ | parties Alice |
48 | ″ | ″ | plain model |
49 | ″ | ″ | power |
50 | ″ | ″ | probability |
51 | ″ | ″ | problem |
52 | ″ | ″ | public communication |
53 | ″ | ″ | quality |
54 | ″ | ″ | quality ratio |
55 | ″ | ″ | random bits |
56 | ″ | ″ | randomness |
57 | ″ | ″ | rate |
58 | ″ | ″ | ratio |
59 | ″ | ″ | ratio q |
60 | ″ | ″ | relation |
61 | ″ | ″ | resources |
62 | ″ | ″ | results |
63 | ″ | ″ | same antenna size |
64 | ″ | ″ | satellite setting |
65 | ″ | ″ | secret key agreement |
66 | ″ | ″ | secret key rate |
67 | ″ | ″ | security |
68 | ″ | ″ | setting |
69 | ″ | ″ | signal energy |
70 | ″ | ″ | signal power |
71 | ″ | ″ | size |
72 | ″ | ″ | symmetric channel |
73 | ″ | ″ | system parameters |
74 | ″ | ″ | terms |
75 | ″ | ″ | tight relation |
76 | ″ | ″ | time |
77 | ″ | ″ | traditional results |
78 | ″ | ″ | types |
79 | ″ | schema:name | Information-Theoretic Secret-Key Agreement: The Asymptotically Tight Relation Between the Secret-Key Rate and the Channel Quality Ratio |
80 | ″ | schema:pagination | 345-369 |
81 | ″ | schema:productId | N5d370332d4504449b9c2a54352fa24f7 |
82 | ″ | ″ | N860dee3a28b14d33b820dd6c65b96cad |
83 | ″ | schema:publisher | N3c93a71ab06f46b8a3688b97af3fc5b0 |
84 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1108021190 |
85 | ″ | ″ | https://doi.org/10.1007/978-3-030-03807-6_13 |
86 | ″ | schema:sdDatePublished | 2022-05-20T07:43 |
87 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
88 | ″ | schema:sdPublisher | N05f543f876d044a6b8c8d758604defa2 |
89 | ″ | schema:url | https://doi.org/10.1007/978-3-030-03807-6_13 |
90 | ″ | sgo:license | sg:explorer/license/ |
91 | ″ | sgo:sdDataset | chapters |
92 | ″ | rdf:type | schema:Chapter |
93 | N0275a0586680449890346fd158fb4775 | rdf:first | N332154849049422b8d7538ed8412bf2f |
94 | ″ | rdf:rest | N3d5b4b8a28fd453e82c87542c5e4a61b |
95 | N05f543f876d044a6b8c8d758604defa2 | schema:name | Springer Nature - SN SciGraph project |
96 | ″ | rdf:type | schema:Organization |
97 | N272bb408324441f5a161da5dc93fe667 | schema:familyName | Dziembowski |
98 | ″ | schema:givenName | Stefan |
99 | ″ | rdf:type | schema:Person |
100 | N332154849049422b8d7538ed8412bf2f | schema:familyName | Beimel |
101 | ″ | schema:givenName | Amos |
102 | ″ | rdf:type | schema:Person |
103 | N3c93a71ab06f46b8a3688b97af3fc5b0 | schema:name | Springer Nature |
104 | ″ | rdf:type | schema:Organisation |
105 | N3d5b4b8a28fd453e82c87542c5e4a61b | rdf:first | N272bb408324441f5a161da5dc93fe667 |
106 | ″ | rdf:rest | rdf:nil |
107 | N5d370332d4504449b9c2a54352fa24f7 | schema:name | doi |
108 | ″ | schema:value | 10.1007/978-3-030-03807-6_13 |
109 | ″ | rdf:type | schema:PropertyValue |
110 | N6e41549caaed44f28a1d6bb53823d407 | rdf:first | sg:person.013534504433.63 |
111 | ″ | rdf:rest | rdf:nil |
112 | N860dee3a28b14d33b820dd6c65b96cad | schema:name | dimensions_id |
113 | ″ | schema:value | pub.1108021190 |
114 | ″ | rdf:type | schema:PropertyValue |
115 | Nf2ff3be6e3684402ad8c2b72ba2f84d3 | rdf:first | sg:person.01316567627.91 |
116 | ″ | rdf:rest | N6e41549caaed44f28a1d6bb53823d407 |
117 | Nf3e34d9d2db743df84450991f3f29698 | rdf:first | sg:person.013356446515.02 |
118 | ″ | rdf:rest | Nf2ff3be6e3684402ad8c2b72ba2f84d3 |
119 | Nfb7b71af26a848fe8dad4bb14da58355 | schema:isbn | 978-3-030-03806-9 |
120 | ″ | ″ | 978-3-030-03807-6 |
121 | ″ | schema:name | Theory of Cryptography |
122 | ″ | rdf:type | schema:Book |
123 | anzsrc-for:10 | schema:inDefinedTermSet | anzsrc-for: |
124 | ″ | schema:name | Technology |
125 | ″ | rdf:type | schema:DefinedTerm |
126 | anzsrc-for:1005 | schema:inDefinedTermSet | anzsrc-for: |
127 | ″ | schema:name | Communications Technologies |
128 | ″ | rdf:type | schema:DefinedTerm |
129 | sg:person.01316567627.91 | schema:affiliation | grid-institutes:grid.5801.c |
130 | ″ | schema:familyName | Maurer |
131 | ″ | schema:givenName | Ueli |
132 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316567627.91 |
133 | ″ | rdf:type | schema:Person |
134 | sg:person.013356446515.02 | schema:affiliation | grid-institutes:grid.5801.c |
135 | ″ | schema:familyName | Jost |
136 | ″ | schema:givenName | Daniel |
137 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013356446515.02 |
138 | ″ | rdf:type | schema:Person |
139 | sg:person.013534504433.63 | schema:affiliation | grid-institutes:grid.7445.2 |
140 | ″ | schema:familyName | Ribeiro |
141 | ″ | schema:givenName | João L. |
142 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013534504433.63 |
143 | ″ | rdf:type | schema:Person |
144 | grid-institutes:grid.5801.c | schema:alternateName | Department of Computer Science, ETH Zurich, 8092, Zurich, Switzerland |
145 | ″ | schema:name | Department of Computer Science, ETH Zurich, 8092, Zurich, Switzerland |
146 | ″ | rdf:type | schema:Organization |
147 | grid-institutes:grid.7445.2 | schema:alternateName | Department of Computing, Imperial College London, SW7 2AZ, London, UK |
148 | ″ | schema:name | Department of Computing, Imperial College London, SW7 2AZ, London, UK |
149 | ″ | rdf:type | schema:Organization |