Pupil Localization Using Geodesic Distance View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-11-10

AUTHORS

Radovan Fusek

ABSTRACT

The main contributions of the presented paper can be summarized as follows. Firstly, we introduce a unique and robust dataset of human eyes that can be used in many detection and recognition scenarios, especially for the recognition of driver drowsiness, gaze direction, or eye-blinking frequency. The dataset consists of approximately 85,000 different eye regions that were captured using various near-infrared cameras, various resolutions, and various lighting conditions. The images are annotated into many categories. Secondly, we present a new method for pupil localization that is based on the geodesic distance. The presented experiments show that the proposed method outperforms the state-of-the-art methods in this area. More... »

PAGES

433-444

Book

TITLE

Advances in Visual Computing

ISBN

978-3-030-03800-7
978-3-030-03801-4

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-03801-4_38

DOI

http://dx.doi.org/10.1007/978-3-030-03801-4_38

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1109840786


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1113", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Ophthalmology and Optometry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technical University of Ostrava", 
          "id": "https://www.grid.ac/institutes/grid.440850.d", 
          "name": [
            "FEECS, Department of Computer Science, Technical University of Ostrava, 17. listopadu 15, 708 33, Ostrava-Poruba, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fusek", 
        "givenName": "Radovan", 
        "id": "sg:person.012340361065.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012340361065.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.3389/fneng.2015.00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000335631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2501643.2501647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014749493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2968219.2968340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016703967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2168556.2168585", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019740036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-23192-1_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019918448", 
          "https://doi.org/10.1007/978-3-319-23192-1_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2014.03.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021423315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45344-x_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024942116", 
          "https://doi.org/10.1007/3-540-45344-x_14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45344-x_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024942116", 
          "https://doi.org/10.1007/3-540-45344-x_14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2168556.2168622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031566347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-cvi.2015.0316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056825480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2007.4409068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093437819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/wacv.2016.7477666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093773983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/biosig.2016.7736915", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095549040"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11-10", 
    "datePublishedReg": "2018-11-10", 
    "description": "The main contributions of the presented paper can be summarized as follows. Firstly, we introduce a unique and robust dataset of human eyes that can be used in many detection and recognition scenarios, especially for the recognition of driver drowsiness, gaze direction, or eye-blinking frequency. The dataset consists of approximately 85,000 different eye regions that were captured using various near-infrared cameras, various resolutions, and various lighting conditions. The images are annotated into many categories. Secondly, we present a new method for pupil localization that is based on the geodesic distance. The presented experiments show that the proposed method outperforms the state-of-the-art methods in this area.", 
    "editor": [
      {
        "familyName": "Bebis", 
        "givenName": "George", 
        "type": "Person"
      }, 
      {
        "familyName": "Boyle", 
        "givenName": "Richard", 
        "type": "Person"
      }, 
      {
        "familyName": "Parvin", 
        "givenName": "Bahram", 
        "type": "Person"
      }, 
      {
        "familyName": "Koracin", 
        "givenName": "Darko", 
        "type": "Person"
      }, 
      {
        "familyName": "Turek", 
        "givenName": "Matt", 
        "type": "Person"
      }, 
      {
        "familyName": "Ramalingam", 
        "givenName": "Srikumar", 
        "type": "Person"
      }, 
      {
        "familyName": "Xu", 
        "givenName": "Kai", 
        "type": "Person"
      }, 
      {
        "familyName": "Lin", 
        "givenName": "Stephen", 
        "type": "Person"
      }, 
      {
        "familyName": "Alsallakh", 
        "givenName": "Bilal", 
        "type": "Person"
      }, 
      {
        "familyName": "Yang", 
        "givenName": "Jing", 
        "type": "Person"
      }, 
      {
        "familyName": "Cuervo", 
        "givenName": "Eduardo", 
        "type": "Person"
      }, 
      {
        "familyName": "Ventura", 
        "givenName": "Jonathan", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-03801-4_38", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-03800-7", 
        "978-3-030-03801-4"
      ], 
      "name": "Advances in Visual Computing", 
      "type": "Book"
    }, 
    "name": "Pupil Localization Using Geodesic Distance", 
    "pagination": "433-444", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-03801-4_38"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "31aa61e020bb21971b685aabc1693d9d0163f2921f571d03191744ac352a0f43"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1109840786"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-03801-4_38", 
      "https://app.dimensions.ai/details/publication/pub.1109840786"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T04:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000322_0000000322/records_65014_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-030-03801-4_38"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-03801-4_38'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-03801-4_38'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-03801-4_38'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-03801-4_38'


 

This table displays all metadata directly associated to this object as RDF triples.

158 TRIPLES      23 PREDICATES      38 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-03801-4_38 schema:about anzsrc-for:11
2 anzsrc-for:1113
3 schema:author Nf004a11e647c4147a567827d1d577d29
4 schema:citation sg:pub.10.1007/3-540-45344-x_14
5 sg:pub.10.1007/978-3-319-23192-1_4
6 https://doi.org/10.1016/j.patcog.2014.03.024
7 https://doi.org/10.1049/iet-cvi.2015.0316
8 https://doi.org/10.1109/biosig.2016.7736915
9 https://doi.org/10.1109/iccv.2007.4409068
10 https://doi.org/10.1109/wacv.2016.7477666
11 https://doi.org/10.1145/2168556.2168585
12 https://doi.org/10.1145/2168556.2168622
13 https://doi.org/10.1145/2501643.2501647
14 https://doi.org/10.1145/2968219.2968340
15 https://doi.org/10.3389/fneng.2015.00004
16 schema:datePublished 2018-11-10
17 schema:datePublishedReg 2018-11-10
18 schema:description The main contributions of the presented paper can be summarized as follows. Firstly, we introduce a unique and robust dataset of human eyes that can be used in many detection and recognition scenarios, especially for the recognition of driver drowsiness, gaze direction, or eye-blinking frequency. The dataset consists of approximately 85,000 different eye regions that were captured using various near-infrared cameras, various resolutions, and various lighting conditions. The images are annotated into many categories. Secondly, we present a new method for pupil localization that is based on the geodesic distance. The presented experiments show that the proposed method outperforms the state-of-the-art methods in this area.
19 schema:editor N03d1607a715640cbbdd8b168864c0102
20 schema:genre chapter
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf Nb162055c2c4741448a010eeb66730955
24 schema:name Pupil Localization Using Geodesic Distance
25 schema:pagination 433-444
26 schema:productId N06e65d0d25344d93924adf57d58b6ad3
27 N37edf0fc95a04a55a7c4fed3fa05c500
28 N73eea3a42ae74d8babc27c3440824960
29 schema:publisher N8094403d29134ce3a85ea78c17d242a8
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109840786
31 https://doi.org/10.1007/978-3-030-03801-4_38
32 schema:sdDatePublished 2019-04-16T04:41
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher Na671a9c3f8ce490c95e6da9f60edac63
35 schema:url https://link.springer.com/10.1007%2F978-3-030-03801-4_38
36 sgo:license sg:explorer/license/
37 sgo:sdDataset chapters
38 rdf:type schema:Chapter
39 N03d1607a715640cbbdd8b168864c0102 rdf:first Nc16859908df54e49b04c82d3099e9585
40 rdf:rest N34aa247acbd34f56ba0e90a1dc0c8a6a
41 N06b752ce70524b0fa9d31636e9cfc34e schema:familyName Alsallakh
42 schema:givenName Bilal
43 rdf:type schema:Person
44 N06e65d0d25344d93924adf57d58b6ad3 schema:name dimensions_id
45 schema:value pub.1109840786
46 rdf:type schema:PropertyValue
47 N0ac4e9d4d63f4068bdf2803021fee561 rdf:first N19b845a3b6b7488093b70ec5b70bc772
48 rdf:rest Nba9b7f946ce743368ce69b701bfc9b5d
49 N19b845a3b6b7488093b70ec5b70bc772 schema:familyName Xu
50 schema:givenName Kai
51 rdf:type schema:Person
52 N34aa247acbd34f56ba0e90a1dc0c8a6a rdf:first Nc8bcb3c5129f4430a5a3054bcbe43bdc
53 rdf:rest Nffada912c89243ed9140aac59e8e20e9
54 N37edf0fc95a04a55a7c4fed3fa05c500 schema:name doi
55 schema:value 10.1007/978-3-030-03801-4_38
56 rdf:type schema:PropertyValue
57 N3f1ed4c79e474c489518f0364de8b1da schema:familyName Cuervo
58 schema:givenName Eduardo
59 rdf:type schema:Person
60 N56bf1b420511402a8330dcc0b0656961 rdf:first N3f1ed4c79e474c489518f0364de8b1da
61 rdf:rest Na806e2d08cf5428ba63d6fa35492c75e
62 N5ea7b8fc4b6245c4baa73ce55a9e6146 schema:familyName Turek
63 schema:givenName Matt
64 rdf:type schema:Person
65 N73eea3a42ae74d8babc27c3440824960 schema:name readcube_id
66 schema:value 31aa61e020bb21971b685aabc1693d9d0163f2921f571d03191744ac352a0f43
67 rdf:type schema:PropertyValue
68 N7c3729c7dcf447a78c62c3bdc0419605 schema:familyName Parvin
69 schema:givenName Bahram
70 rdf:type schema:Person
71 N7dc1c59d0bfc419e8ed81253df34c77c schema:familyName Ventura
72 schema:givenName Jonathan
73 rdf:type schema:Person
74 N7edeae1a23004dbda687c9ff7e7204c1 schema:familyName Lin
75 schema:givenName Stephen
76 rdf:type schema:Person
77 N8094403d29134ce3a85ea78c17d242a8 schema:location Cham
78 schema:name Springer International Publishing
79 rdf:type schema:Organisation
80 N8344c2af43bc4b7aa143b9eae771992c rdf:first Nf5978f9ccf19402e8605959f378070c8
81 rdf:rest Ncfa6e2cb6097477792cf2cb2fd5679ec
82 Na4f3136d82034cdebf0134e6a070b2fc schema:familyName Yang
83 schema:givenName Jing
84 rdf:type schema:Person
85 Na671a9c3f8ce490c95e6da9f60edac63 schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 Na806e2d08cf5428ba63d6fa35492c75e rdf:first N7dc1c59d0bfc419e8ed81253df34c77c
88 rdf:rest rdf:nil
89 Naef88dab7c71468d83ba6fcbb9fed188 rdf:first Nb7fddac622444c97bb1655fe20c950e8
90 rdf:rest N0ac4e9d4d63f4068bdf2803021fee561
91 Nb162055c2c4741448a010eeb66730955 schema:isbn 978-3-030-03800-7
92 978-3-030-03801-4
93 schema:name Advances in Visual Computing
94 rdf:type schema:Book
95 Nb7fddac622444c97bb1655fe20c950e8 schema:familyName Ramalingam
96 schema:givenName Srikumar
97 rdf:type schema:Person
98 Nba9b7f946ce743368ce69b701bfc9b5d rdf:first N7edeae1a23004dbda687c9ff7e7204c1
99 rdf:rest Ne0b5eaabbae544899f7666df5d7d1b59
100 Nc16859908df54e49b04c82d3099e9585 schema:familyName Bebis
101 schema:givenName George
102 rdf:type schema:Person
103 Nc8bcb3c5129f4430a5a3054bcbe43bdc schema:familyName Boyle
104 schema:givenName Richard
105 rdf:type schema:Person
106 Ncfa6e2cb6097477792cf2cb2fd5679ec rdf:first N5ea7b8fc4b6245c4baa73ce55a9e6146
107 rdf:rest Naef88dab7c71468d83ba6fcbb9fed188
108 Nd0569010f11242a2b3ad5967c779f144 rdf:first Na4f3136d82034cdebf0134e6a070b2fc
109 rdf:rest N56bf1b420511402a8330dcc0b0656961
110 Ne0b5eaabbae544899f7666df5d7d1b59 rdf:first N06b752ce70524b0fa9d31636e9cfc34e
111 rdf:rest Nd0569010f11242a2b3ad5967c779f144
112 Nf004a11e647c4147a567827d1d577d29 rdf:first sg:person.012340361065.43
113 rdf:rest rdf:nil
114 Nf5978f9ccf19402e8605959f378070c8 schema:familyName Koracin
115 schema:givenName Darko
116 rdf:type schema:Person
117 Nffada912c89243ed9140aac59e8e20e9 rdf:first N7c3729c7dcf447a78c62c3bdc0419605
118 rdf:rest N8344c2af43bc4b7aa143b9eae771992c
119 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
120 schema:name Medical and Health Sciences
121 rdf:type schema:DefinedTerm
122 anzsrc-for:1113 schema:inDefinedTermSet anzsrc-for:
123 schema:name Ophthalmology and Optometry
124 rdf:type schema:DefinedTerm
125 sg:person.012340361065.43 schema:affiliation https://www.grid.ac/institutes/grid.440850.d
126 schema:familyName Fusek
127 schema:givenName Radovan
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012340361065.43
129 rdf:type schema:Person
130 sg:pub.10.1007/3-540-45344-x_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024942116
131 https://doi.org/10.1007/3-540-45344-x_14
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/978-3-319-23192-1_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019918448
134 https://doi.org/10.1007/978-3-319-23192-1_4
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.patcog.2014.03.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021423315
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1049/iet-cvi.2015.0316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056825480
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1109/biosig.2016.7736915 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095549040
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1109/iccv.2007.4409068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093437819
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1109/wacv.2016.7477666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093773983
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1145/2168556.2168585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019740036
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1145/2168556.2168622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031566347
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1145/2501643.2501647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014749493
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1145/2968219.2968340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016703967
153 rdf:type schema:CreativeWork
154 https://doi.org/10.3389/fneng.2015.00004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000335631
155 rdf:type schema:CreativeWork
156 https://www.grid.ac/institutes/grid.440850.d schema:alternateName Technical University of Ostrava
157 schema:name FEECS, Department of Computer Science, Technical University of Ostrava, 17. listopadu 15, 708 33, Ostrava-Poruba, Czech Republic
158 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...