Deep Convolutional Correlation Filters for Forward-Backward Visual Tracking View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-11-10

AUTHORS

Yong Wang , Robert Laganière , Daniel Laroche , Ali Osman Ors , Xiaoyin Xu , Changyun Zhu

ABSTRACT

In this paper, we exploit convolutional features extracted from multiple layers of a pre-trained deep convolutional neural network. The outputs of the multiple convolutional layers encode both low-level and high-level information about the targets. The earlier convolutional layers provide accurate positional information while the late convolutional layers are invariant to appearance changes and provide more semantic information. Specifically, each convolutional layer locates a target through correlation filter-based tracking and then traces the target backward. By analyzing the forward and backward tracking results, we evaluate the robustness of the tracker in each layer. The final position is determined by fusing the locations from each layer. A region proposal network (RPN) is employed whenever a backward tracker failure occurs. The new position will be chosen from the proposal candidates generated by the RPN. Extensive experiments have been implemented on several benchmark datasets. Our proposed tracking method achieves favorable results compared to state-of-the-art methods. More... »

PAGES

320-331

References to SciGraph publications

Book

TITLE

Advances in Visual Computing

ISBN

978-3-030-03800-7
978-3-030-03801-4

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-03801-4_29

DOI

http://dx.doi.org/10.1007/978-3-030-03801-4_29

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1109840776


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Ottawa", 
          "id": "https://www.grid.ac/institutes/grid.28046.38", 
          "name": [
            "School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yong", 
        "id": "sg:person.015433566274.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015433566274.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Ottawa", 
          "id": "https://www.grid.ac/institutes/grid.28046.38", 
          "name": [
            "School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lagani\u00e8re", 
        "givenName": "Robert", 
        "id": "sg:person.01144533722.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144533722.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "NXP Semiconductors, Ottawa, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Laroche", 
        "givenName": "Daniel", 
        "id": "sg:person.012423533165.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012423533165.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "NXP Semiconductors, Ottawa, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ors", 
        "givenName": "Ali Osman", 
        "id": "sg:person.012277754376.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012277754376.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "NXP Semiconductors, Ottawa, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Xiaoyin", 
        "id": "sg:person.010705013376.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010705013376.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "NXP Semiconductors, Ottawa, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Changyun", 
        "id": "sg:person.016612504176.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016612504176.76"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-319-10599-4_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010891849", 
          "https://doi.org/10.1007/978-3-319-10599-4_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2011.239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061744121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2014.2345390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061744716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2014.2388226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061744808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2016.2577031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061745117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2016.153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093726236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2010.5539960", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093797592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2015.352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093854374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2012.6247882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094211569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccvw.2015.80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095538227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2011.6126251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095713809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2016.466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095713935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2017.531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095846173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5244/c.29.185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099427236"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11-10", 
    "datePublishedReg": "2018-11-10", 
    "description": "In this paper, we exploit convolutional features extracted from multiple layers of a pre-trained deep convolutional neural network. The outputs of the multiple convolutional layers encode both low-level and high-level information about the targets. The earlier convolutional layers provide accurate positional information while the late convolutional layers are invariant to appearance changes and provide more semantic information. Specifically, each convolutional layer locates a target through correlation filter-based tracking and then traces the target backward. By analyzing the forward and backward tracking results, we evaluate the robustness of the tracker in each layer. The final position is determined by fusing the locations from each layer. A region proposal network (RPN) is employed whenever a backward tracker failure occurs. The new position will be chosen from the proposal candidates generated by the RPN. Extensive experiments have been implemented on several benchmark datasets. Our proposed tracking method achieves favorable results compared to state-of-the-art methods.", 
    "editor": [
      {
        "familyName": "Bebis", 
        "givenName": "George", 
        "type": "Person"
      }, 
      {
        "familyName": "Boyle", 
        "givenName": "Richard", 
        "type": "Person"
      }, 
      {
        "familyName": "Parvin", 
        "givenName": "Bahram", 
        "type": "Person"
      }, 
      {
        "familyName": "Koracin", 
        "givenName": "Darko", 
        "type": "Person"
      }, 
      {
        "familyName": "Turek", 
        "givenName": "Matt", 
        "type": "Person"
      }, 
      {
        "familyName": "Ramalingam", 
        "givenName": "Srikumar", 
        "type": "Person"
      }, 
      {
        "familyName": "Xu", 
        "givenName": "Kai", 
        "type": "Person"
      }, 
      {
        "familyName": "Lin", 
        "givenName": "Stephen", 
        "type": "Person"
      }, 
      {
        "familyName": "Alsallakh", 
        "givenName": "Bilal", 
        "type": "Person"
      }, 
      {
        "familyName": "Yang", 
        "givenName": "Jing", 
        "type": "Person"
      }, 
      {
        "familyName": "Cuervo", 
        "givenName": "Eduardo", 
        "type": "Person"
      }, 
      {
        "familyName": "Ventura", 
        "givenName": "Jonathan", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-03801-4_29", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-03800-7", 
        "978-3-030-03801-4"
      ], 
      "name": "Advances in Visual Computing", 
      "type": "Book"
    }, 
    "name": "Deep Convolutional Correlation Filters for Forward-Backward Visual Tracking", 
    "pagination": "320-331", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-03801-4_29"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1072c0009fd00197f7cf386b7b3d8c8693798fedd42610750ef4185a1b4f2ec0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1109840776"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-03801-4_29", 
      "https://app.dimensions.ai/details/publication/pub.1109840776"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T04:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000322_0000000322/records_64996_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-030-03801-4_29"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-03801-4_29'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-03801-4_29'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-03801-4_29'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-03801-4_29'


 

This table displays all metadata directly associated to this object as RDF triples.

206 TRIPLES      23 PREDICATES      40 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-03801-4_29 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N0d5203ca043444d88a2ac7dce4e90371
4 schema:citation sg:pub.10.1007/978-3-319-10599-4_13
5 https://doi.org/10.1109/cvpr.2010.5539960
6 https://doi.org/10.1109/cvpr.2012.6247882
7 https://doi.org/10.1109/cvpr.2016.153
8 https://doi.org/10.1109/cvpr.2016.466
9 https://doi.org/10.1109/cvpr.2017.531
10 https://doi.org/10.1109/iccv.2011.6126251
11 https://doi.org/10.1109/iccv.2015.352
12 https://doi.org/10.1109/iccvw.2015.80
13 https://doi.org/10.1109/tpami.2011.239
14 https://doi.org/10.1109/tpami.2014.2345390
15 https://doi.org/10.1109/tpami.2014.2388226
16 https://doi.org/10.1109/tpami.2016.2577031
17 https://doi.org/10.5244/c.29.185
18 schema:datePublished 2018-11-10
19 schema:datePublishedReg 2018-11-10
20 schema:description In this paper, we exploit convolutional features extracted from multiple layers of a pre-trained deep convolutional neural network. The outputs of the multiple convolutional layers encode both low-level and high-level information about the targets. The earlier convolutional layers provide accurate positional information while the late convolutional layers are invariant to appearance changes and provide more semantic information. Specifically, each convolutional layer locates a target through correlation filter-based tracking and then traces the target backward. By analyzing the forward and backward tracking results, we evaluate the robustness of the tracker in each layer. The final position is determined by fusing the locations from each layer. A region proposal network (RPN) is employed whenever a backward tracker failure occurs. The new position will be chosen from the proposal candidates generated by the RPN. Extensive experiments have been implemented on several benchmark datasets. Our proposed tracking method achieves favorable results compared to state-of-the-art methods.
21 schema:editor N69a12da09d51463da052ab9871a87540
22 schema:genre chapter
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf N36376716ff9c47cd8dc6c6fff37833af
26 schema:name Deep Convolutional Correlation Filters for Forward-Backward Visual Tracking
27 schema:pagination 320-331
28 schema:productId N15799f97a3984fb98534084dc7abe5e1
29 N8b6959a38259448b8e208f1976032eb7
30 Nb03a1f222b6149cc92d5d35ff6287d0b
31 schema:publisher Ndd3089165c47475fbdd1a9be2e6b43e4
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109840776
33 https://doi.org/10.1007/978-3-030-03801-4_29
34 schema:sdDatePublished 2019-04-16T04:40
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N58e323701eda4d46893b2ffa20eb58f1
37 schema:url https://link.springer.com/10.1007%2F978-3-030-03801-4_29
38 sgo:license sg:explorer/license/
39 sgo:sdDataset chapters
40 rdf:type schema:Chapter
41 N0392505cd4e8497fa52ee9ea8bd55f2f schema:familyName Xu
42 schema:givenName Kai
43 rdf:type schema:Person
44 N05322f13f40c4bd1a0b36dd4c0b37c46 schema:familyName Cuervo
45 schema:givenName Eduardo
46 rdf:type schema:Person
47 N0d5203ca043444d88a2ac7dce4e90371 rdf:first sg:person.015433566274.28
48 rdf:rest N21d98d39bcac42faa616b238f38448d1
49 N15799f97a3984fb98534084dc7abe5e1 schema:name doi
50 schema:value 10.1007/978-3-030-03801-4_29
51 rdf:type schema:PropertyValue
52 N2105767ae11d41aab4cb52fbcd64c485 rdf:first Naafb5e780b514d2c8612412d25c37a29
53 rdf:rest N9db3eafa855f4feea5f34bba4e6ea314
54 N21d98d39bcac42faa616b238f38448d1 rdf:first sg:person.01144533722.06
55 rdf:rest Nd3496f910a8e48e09319bab866cadaf7
56 N230a053cc2744993b57cf410fcfbf9cd rdf:first Nfedd055cd2bf4c95a1e79ff86917a824
57 rdf:rest Ndd6e982efdcd4077b018113966569bf8
58 N27e44a0e806741959d18e8160888da77 rdf:first sg:person.010705013376.35
59 rdf:rest Ndd9433c80cce4d2abba4bde11f2268d8
60 N35cef1ec719c4cfa94d72a3de512710b schema:name NXP Semiconductors, Ottawa, ON, Canada
61 rdf:type schema:Organization
62 N36376716ff9c47cd8dc6c6fff37833af schema:isbn 978-3-030-03800-7
63 978-3-030-03801-4
64 schema:name Advances in Visual Computing
65 rdf:type schema:Book
66 N4d9fe0c08b0c488a98633070fab75256 rdf:first Ne464af48b8e44d4299b80170ad1ae7c3
67 rdf:rest Nb7431c9f2fee42a2891bcd58b3b19864
68 N4e0319796df24a82ba2abc2347205cd4 schema:familyName Bebis
69 schema:givenName George
70 rdf:type schema:Person
71 N58e323701eda4d46893b2ffa20eb58f1 schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 N5be89a329da747209b2e3ba0108d8617 schema:name NXP Semiconductors, Ottawa, ON, Canada
74 rdf:type schema:Organization
75 N609db17cee8540afbb45f3760e695d52 schema:name NXP Semiconductors, Ottawa, ON, Canada
76 rdf:type schema:Organization
77 N64d5c68490a34321a0be56351fb0a9b6 rdf:first N9077fbd9203f470fbdda0a1b84e24195
78 rdf:rest rdf:nil
79 N69a12da09d51463da052ab9871a87540 rdf:first N4e0319796df24a82ba2abc2347205cd4
80 rdf:rest N2105767ae11d41aab4cb52fbcd64c485
81 N7774e4c01601470e8e02dda38f3931ec rdf:first N80962e72787044a2a3400812e797804e
82 rdf:rest Nfe3d0f5c6af7498ba3a0a7ff641038b4
83 N80962e72787044a2a3400812e797804e schema:familyName Lin
84 schema:givenName Stephen
85 rdf:type schema:Person
86 N86c95dfbcf8e46ceb32a3430a1049815 schema:familyName Ramalingam
87 schema:givenName Srikumar
88 rdf:type schema:Person
89 N8b6959a38259448b8e208f1976032eb7 schema:name readcube_id
90 schema:value 1072c0009fd00197f7cf386b7b3d8c8693798fedd42610750ef4185a1b4f2ec0
91 rdf:type schema:PropertyValue
92 N9077fbd9203f470fbdda0a1b84e24195 schema:familyName Ventura
93 schema:givenName Jonathan
94 rdf:type schema:Person
95 N9db3eafa855f4feea5f34bba4e6ea314 rdf:first Nee7cf7c7b2e5429c992583c59b064b79
96 rdf:rest Nb3a14e5583a04a4fa56efadf72b3a25f
97 Naafb5e780b514d2c8612412d25c37a29 schema:familyName Boyle
98 schema:givenName Richard
99 rdf:type schema:Person
100 Nad2feaf77fe84fddb659887da2c2f295 rdf:first N0392505cd4e8497fa52ee9ea8bd55f2f
101 rdf:rest N7774e4c01601470e8e02dda38f3931ec
102 Naeeb8862c5d44e41b3527311db2271f4 schema:name NXP Semiconductors, Ottawa, ON, Canada
103 rdf:type schema:Organization
104 Nb03a1f222b6149cc92d5d35ff6287d0b schema:name dimensions_id
105 schema:value pub.1109840776
106 rdf:type schema:PropertyValue
107 Nb3a14e5583a04a4fa56efadf72b3a25f rdf:first Ncb97acdf029f422c9b604c19bc33a0a7
108 rdf:rest N4d9fe0c08b0c488a98633070fab75256
109 Nb7431c9f2fee42a2891bcd58b3b19864 rdf:first N86c95dfbcf8e46ceb32a3430a1049815
110 rdf:rest Nad2feaf77fe84fddb659887da2c2f295
111 Ncb97acdf029f422c9b604c19bc33a0a7 schema:familyName Koracin
112 schema:givenName Darko
113 rdf:type schema:Person
114 Nd3496f910a8e48e09319bab866cadaf7 rdf:first sg:person.012423533165.31
115 rdf:rest Ne8d8b5d3a6fd494cac058b205442b6a7
116 Ndab157ed1f4644d1b64b210d972b5c8a schema:familyName Alsallakh
117 schema:givenName Bilal
118 rdf:type schema:Person
119 Ndd3089165c47475fbdd1a9be2e6b43e4 schema:location Cham
120 schema:name Springer International Publishing
121 rdf:type schema:Organisation
122 Ndd6e982efdcd4077b018113966569bf8 rdf:first N05322f13f40c4bd1a0b36dd4c0b37c46
123 rdf:rest N64d5c68490a34321a0be56351fb0a9b6
124 Ndd9433c80cce4d2abba4bde11f2268d8 rdf:first sg:person.016612504176.76
125 rdf:rest rdf:nil
126 Ne464af48b8e44d4299b80170ad1ae7c3 schema:familyName Turek
127 schema:givenName Matt
128 rdf:type schema:Person
129 Ne8d8b5d3a6fd494cac058b205442b6a7 rdf:first sg:person.012277754376.04
130 rdf:rest N27e44a0e806741959d18e8160888da77
131 Nee7cf7c7b2e5429c992583c59b064b79 schema:familyName Parvin
132 schema:givenName Bahram
133 rdf:type schema:Person
134 Nfe3d0f5c6af7498ba3a0a7ff641038b4 rdf:first Ndab157ed1f4644d1b64b210d972b5c8a
135 rdf:rest N230a053cc2744993b57cf410fcfbf9cd
136 Nfedd055cd2bf4c95a1e79ff86917a824 schema:familyName Yang
137 schema:givenName Jing
138 rdf:type schema:Person
139 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
140 schema:name Information and Computing Sciences
141 rdf:type schema:DefinedTerm
142 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
143 schema:name Artificial Intelligence and Image Processing
144 rdf:type schema:DefinedTerm
145 sg:person.010705013376.35 schema:affiliation N609db17cee8540afbb45f3760e695d52
146 schema:familyName Xu
147 schema:givenName Xiaoyin
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010705013376.35
149 rdf:type schema:Person
150 sg:person.01144533722.06 schema:affiliation https://www.grid.ac/institutes/grid.28046.38
151 schema:familyName Laganière
152 schema:givenName Robert
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144533722.06
154 rdf:type schema:Person
155 sg:person.012277754376.04 schema:affiliation N35cef1ec719c4cfa94d72a3de512710b
156 schema:familyName Ors
157 schema:givenName Ali Osman
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012277754376.04
159 rdf:type schema:Person
160 sg:person.012423533165.31 schema:affiliation N5be89a329da747209b2e3ba0108d8617
161 schema:familyName Laroche
162 schema:givenName Daniel
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012423533165.31
164 rdf:type schema:Person
165 sg:person.015433566274.28 schema:affiliation https://www.grid.ac/institutes/grid.28046.38
166 schema:familyName Wang
167 schema:givenName Yong
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015433566274.28
169 rdf:type schema:Person
170 sg:person.016612504176.76 schema:affiliation Naeeb8862c5d44e41b3527311db2271f4
171 schema:familyName Zhu
172 schema:givenName Changyun
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016612504176.76
174 rdf:type schema:Person
175 sg:pub.10.1007/978-3-319-10599-4_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010891849
176 https://doi.org/10.1007/978-3-319-10599-4_13
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1109/cvpr.2010.5539960 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093797592
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1109/cvpr.2012.6247882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094211569
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1109/cvpr.2016.153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093726236
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1109/cvpr.2016.466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095713935
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1109/cvpr.2017.531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095846173
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1109/iccv.2011.6126251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095713809
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1109/iccv.2015.352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093854374
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1109/iccvw.2015.80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095538227
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1109/tpami.2011.239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061744121
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1109/tpami.2014.2345390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061744716
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1109/tpami.2014.2388226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061744808
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1109/tpami.2016.2577031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061745117
201 rdf:type schema:CreativeWork
202 https://doi.org/10.5244/c.29.185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099427236
203 rdf:type schema:CreativeWork
204 https://www.grid.ac/institutes/grid.28046.38 schema:alternateName University of Ottawa
205 schema:name School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada
206 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...