Video-Based Human Action Recognition Using Kernel Relevance Analysis View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-11-10

AUTHORS

Jorge Fernández-Ramírez , Andrés Álvarez-Meza , Álvaro Orozco-Gutiérrez

ABSTRACT

This paper presents a video-based Human Action Recognition using kernel relevance analysis. Our approach, termed HARK, comprises the conventional pipeline employed in action recognition, with a two-fold post-processing stage: (i) A descriptor relevance ranking based on the centered kernel alignment (CKA) algorithm to match trajectory-aligned descriptors with the output labels (action categories), and (ii) a feature embedding based on the same algorithm to project the video samples into the CKA space, where the class separability is preserved, and the number of dimensions is reduced. For concrete testing, the UCF50 human action dataset is employed to assess the HARK under a leave-one-group-out cross-validation scheme. Attained results show that the proposed approach correctly classifies the 90.97% of human actions samples using an average input data dimension of 105 in the classification stage, which outperforms state-of-the-art results concerning the trade-off between accuracy and dimensionality of the final video representation. Also, the relevance analysis allows to increase the video data interpretability, by ranking trajectory-aligned descriptors according to their importance to support action recognition. More... »

PAGES

116-125

References to SciGraph publications

Book

TITLE

Advances in Visual Computing

ISBN

978-3-030-03800-7
978-3-030-03801-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-03801-4_11

DOI

http://dx.doi.org/10.1007/978-3-030-03801-4_11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1109840757


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Automatics Research Group, Pereira, Colombia", 
            "Universidad Tecnolgica de Pereira, Pereira, Colombia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fern\u00e1ndez-Ram\u00edrez", 
        "givenName": "Jorge", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Automatics Research Group, Pereira, Colombia", 
            "Universidad Tecnolgica de Pereira, Pereira, Colombia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "\u00c1lvarez-Meza", 
        "givenName": "Andr\u00e9s", 
        "id": "sg:person.01261456124.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261456124.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Automatics Research Group, Pereira, Colombia", 
            "Universidad Tecnolgica de Pereira, Pereira, Colombia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Orozco-Guti\u00e9rrez", 
        "givenName": "\u00c1lvaro", 
        "id": "sg:person.012201216001.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012201216001.24"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.imavis.2015.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004668147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11263-012-0594-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011251901", 
          "https://doi.org/10.1007/s11263-012-0594-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2016/6750459", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012589854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11263-015-0846-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023517073", 
          "https://doi.org/10.1007/s11263-015-0846-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-51811-4_30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026083106", 
          "https://doi.org/10.1007/978-3-319-51811-4_30"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-15561-1_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045344996", 
          "https://doi.org/10.1007/978-3-642-15561-1_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-15561-1_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045344996", 
          "https://doi.org/10.1007/978-3-642-15561-1_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13735-014-0069-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047407114", 
          "https://doi.org/10.1007/s13735-014-0069-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00138-012-0450-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047490759", 
          "https://doi.org/10.1007/s00138-012-0450-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2015.2500585", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061530064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2013.2252622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061643522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2017.2655048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079396368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnins.2017.00550", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092114708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.2285510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101391014"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11-10", 
    "datePublishedReg": "2018-11-10", 
    "description": "This paper presents a video-based Human Action Recognition using kernel relevance analysis. Our approach, termed HARK, comprises the conventional pipeline employed in action recognition, with a two-fold post-processing stage: (i) A descriptor relevance ranking based on the centered kernel alignment (CKA) algorithm to match trajectory-aligned descriptors with the output labels (action categories), and (ii) a feature embedding based on the same algorithm to project the video samples into the CKA space, where the class separability is preserved, and the number of dimensions is reduced. For concrete testing, the UCF50 human action dataset is employed to assess the HARK under a leave-one-group-out cross-validation scheme. Attained results show that the proposed approach correctly classifies the 90.97% of human actions samples using an average input data dimension of 105 in the classification stage, which outperforms state-of-the-art results concerning the trade-off between accuracy and dimensionality of the final video representation. Also, the relevance analysis allows to increase the video data interpretability, by ranking trajectory-aligned descriptors according to their importance to support action recognition.", 
    "editor": [
      {
        "familyName": "Bebis", 
        "givenName": "George", 
        "type": "Person"
      }, 
      {
        "familyName": "Boyle", 
        "givenName": "Richard", 
        "type": "Person"
      }, 
      {
        "familyName": "Parvin", 
        "givenName": "Bahram", 
        "type": "Person"
      }, 
      {
        "familyName": "Koracin", 
        "givenName": "Darko", 
        "type": "Person"
      }, 
      {
        "familyName": "Turek", 
        "givenName": "Matt", 
        "type": "Person"
      }, 
      {
        "familyName": "Ramalingam", 
        "givenName": "Srikumar", 
        "type": "Person"
      }, 
      {
        "familyName": "Xu", 
        "givenName": "Kai", 
        "type": "Person"
      }, 
      {
        "familyName": "Lin", 
        "givenName": "Stephen", 
        "type": "Person"
      }, 
      {
        "familyName": "Alsallakh", 
        "givenName": "Bilal", 
        "type": "Person"
      }, 
      {
        "familyName": "Yang", 
        "givenName": "Jing", 
        "type": "Person"
      }, 
      {
        "familyName": "Cuervo", 
        "givenName": "Eduardo", 
        "type": "Person"
      }, 
      {
        "familyName": "Ventura", 
        "givenName": "Jonathan", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-03801-4_11", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-03800-7", 
        "978-3-030-03801-4"
      ], 
      "name": "Advances in Visual Computing", 
      "type": "Book"
    }, 
    "name": "Video-Based Human Action Recognition Using Kernel Relevance Analysis", 
    "pagination": "116-125", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-03801-4_11"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "22c0d251f448a4bbffc773f94c39f4c69b66942a29eee955d62411fe7c12c6bf"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1109840757"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-03801-4_11", 
      "https://app.dimensions.ai/details/publication/pub.1109840757"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T04:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000322_0000000322/records_65025_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-030-03801-4_11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-03801-4_11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-03801-4_11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-03801-4_11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-03801-4_11'


 

This table displays all metadata directly associated to this object as RDF triples.

184 TRIPLES      23 PREDICATES      39 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-03801-4_11 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nda8d678140c04367aaa137d19dbb90fd
4 schema:citation sg:pub.10.1007/978-3-319-51811-4_30
5 sg:pub.10.1007/978-3-642-15561-1_11
6 sg:pub.10.1007/s00138-012-0450-4
7 sg:pub.10.1007/s11263-012-0594-8
8 sg:pub.10.1007/s11263-015-0846-5
9 sg:pub.10.1007/s13735-014-0069-5
10 https://doi.org/10.1016/j.imavis.2015.11.006
11 https://doi.org/10.1109/tbme.2015.2500585
12 https://doi.org/10.1109/tip.2013.2252622
13 https://doi.org/10.1109/tpami.2017.2655048
14 https://doi.org/10.1117/12.2285510
15 https://doi.org/10.1155/2016/6750459
16 https://doi.org/10.3389/fnins.2017.00550
17 schema:datePublished 2018-11-10
18 schema:datePublishedReg 2018-11-10
19 schema:description This paper presents a video-based Human Action Recognition using kernel relevance analysis. Our approach, termed HARK, comprises the conventional pipeline employed in action recognition, with a two-fold post-processing stage: (i) A descriptor relevance ranking based on the centered kernel alignment (CKA) algorithm to match trajectory-aligned descriptors with the output labels (action categories), and (ii) a feature embedding based on the same algorithm to project the video samples into the CKA space, where the class separability is preserved, and the number of dimensions is reduced. For concrete testing, the UCF50 human action dataset is employed to assess the HARK under a leave-one-group-out cross-validation scheme. Attained results show that the proposed approach correctly classifies the 90.97% of human actions samples using an average input data dimension of 105 in the classification stage, which outperforms state-of-the-art results concerning the trade-off between accuracy and dimensionality of the final video representation. Also, the relevance analysis allows to increase the video data interpretability, by ranking trajectory-aligned descriptors according to their importance to support action recognition.
20 schema:editor N505b6b32301948e4bf48c5fe07c9a8f8
21 schema:genre chapter
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N1676b1ca8b7c479bb1c0a0979c165d91
25 schema:name Video-Based Human Action Recognition Using Kernel Relevance Analysis
26 schema:pagination 116-125
27 schema:productId N4375c9a9bfa1474db5a3a0bc1980ae94
28 N7c8e5b1c402b4d5ab5b6cffbfc443c84
29 N8930d34478fd4a8ca07fa08ca05031cd
30 schema:publisher N939602f58ba0468cbf297370f2492968
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109840757
32 https://doi.org/10.1007/978-3-030-03801-4_11
33 schema:sdDatePublished 2019-04-16T04:41
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher N3a366f68d8b04f45b1fd9e9f5978f28c
36 schema:url https://link.springer.com/10.1007%2F978-3-030-03801-4_11
37 sgo:license sg:explorer/license/
38 sgo:sdDataset chapters
39 rdf:type schema:Chapter
40 N09ce591a96bc473892cfb5a70fec5c4f schema:name Automatics Research Group, Pereira, Colombia
41 Universidad Tecnolgica de Pereira, Pereira, Colombia
42 rdf:type schema:Organization
43 N11ba8eb2becb42e8bbbd623953a63da7 rdf:first Ne8c92f99b3934f39a093fdabc07fdbe3
44 rdf:rest N99108327f2e248e88e40caab3ccffce8
45 N156b9bf645f3485cb0bb80f1ae589523 schema:familyName Bebis
46 schema:givenName George
47 rdf:type schema:Person
48 N1676b1ca8b7c479bb1c0a0979c165d91 schema:isbn 978-3-030-03800-7
49 978-3-030-03801-4
50 schema:name Advances in Visual Computing
51 rdf:type schema:Book
52 N274eded3ffd347f98e641effb50f9982 rdf:first N81f53bbe531547e5ab3f3bc6b4fedd8f
53 rdf:rest N11ba8eb2becb42e8bbbd623953a63da7
54 N28464508cad34b5e894ef6e90f610cf9 rdf:first N9aaff97f2dd941f4a85d22e014b31f7e
55 rdf:rest Ne702fb573e5f4b40b32646a8ac2beb8f
56 N2927eea5ad7749a3a2ef802401fee53f schema:familyName Ramalingam
57 schema:givenName Srikumar
58 rdf:type schema:Person
59 N29e6c7281d3548f3b1be60515ee524f3 schema:affiliation Nfd2eb195ae7344a5b8dc3e62bfbc02b2
60 schema:familyName Fernández-Ramírez
61 schema:givenName Jorge
62 rdf:type schema:Person
63 N37ba8bb828714d7297e8656ef480cd97 rdf:first Ne976a4ae619b498a956352a06053c80d
64 rdf:rest rdf:nil
65 N3a366f68d8b04f45b1fd9e9f5978f28c schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 N4375c9a9bfa1474db5a3a0bc1980ae94 schema:name dimensions_id
68 schema:value pub.1109840757
69 rdf:type schema:PropertyValue
70 N505b6b32301948e4bf48c5fe07c9a8f8 rdf:first N156b9bf645f3485cb0bb80f1ae589523
71 rdf:rest Na99583fab0944e2f8f5eb9f09eb2fc24
72 N5490a48784f748fbab437f9e4c29f669 schema:familyName Koracin
73 schema:givenName Darko
74 rdf:type schema:Person
75 N5c56619dde5b4b5cb99ec938a5317062 schema:familyName Parvin
76 schema:givenName Bahram
77 rdf:type schema:Person
78 N78874b8d049f4f2bb3c38495c407a43c schema:name Automatics Research Group, Pereira, Colombia
79 Universidad Tecnolgica de Pereira, Pereira, Colombia
80 rdf:type schema:Organization
81 N7c8e5b1c402b4d5ab5b6cffbfc443c84 schema:name doi
82 schema:value 10.1007/978-3-030-03801-4_11
83 rdf:type schema:PropertyValue
84 N8002417935f345d1852af6d392a202e3 schema:familyName Boyle
85 schema:givenName Richard
86 rdf:type schema:Person
87 N81f53bbe531547e5ab3f3bc6b4fedd8f schema:familyName Alsallakh
88 schema:givenName Bilal
89 rdf:type schema:Person
90 N8930d34478fd4a8ca07fa08ca05031cd schema:name readcube_id
91 schema:value 22c0d251f448a4bbffc773f94c39f4c69b66942a29eee955d62411fe7c12c6bf
92 rdf:type schema:PropertyValue
93 N939602f58ba0468cbf297370f2492968 schema:location Cham
94 schema:name Springer International Publishing
95 rdf:type schema:Organisation
96 N99108327f2e248e88e40caab3ccffce8 rdf:first Na7049967371442089adb62297aca2ee6
97 rdf:rest N37ba8bb828714d7297e8656ef480cd97
98 N9aaff97f2dd941f4a85d22e014b31f7e schema:familyName Xu
99 schema:givenName Kai
100 rdf:type schema:Person
101 Na7049967371442089adb62297aca2ee6 schema:familyName Cuervo
102 schema:givenName Eduardo
103 rdf:type schema:Person
104 Na99583fab0944e2f8f5eb9f09eb2fc24 rdf:first N8002417935f345d1852af6d392a202e3
105 rdf:rest Ne428f80d6f2247409f288e878d6c48a3
106 Nc5059d904fdc443fa413600fce37c3aa rdf:first sg:person.01261456124.28
107 rdf:rest Nf764a80c1a024699aa671684dddc994d
108 Nc92cbb498805463784922947272c9c9b schema:familyName Lin
109 schema:givenName Stephen
110 rdf:type schema:Person
111 Nd68a26e74e9248908bfc79ceb9a20d3f rdf:first N2927eea5ad7749a3a2ef802401fee53f
112 rdf:rest N28464508cad34b5e894ef6e90f610cf9
113 Nda8d678140c04367aaa137d19dbb90fd rdf:first N29e6c7281d3548f3b1be60515ee524f3
114 rdf:rest Nc5059d904fdc443fa413600fce37c3aa
115 Ne428f80d6f2247409f288e878d6c48a3 rdf:first N5c56619dde5b4b5cb99ec938a5317062
116 rdf:rest Nf0b430d5dd534ef1af4d19a6664f6080
117 Ne702fb573e5f4b40b32646a8ac2beb8f rdf:first Nc92cbb498805463784922947272c9c9b
118 rdf:rest N274eded3ffd347f98e641effb50f9982
119 Ne8c92f99b3934f39a093fdabc07fdbe3 schema:familyName Yang
120 schema:givenName Jing
121 rdf:type schema:Person
122 Ne976a4ae619b498a956352a06053c80d schema:familyName Ventura
123 schema:givenName Jonathan
124 rdf:type schema:Person
125 Neceeb0a77ca64c6ba5b644b9721276d4 schema:familyName Turek
126 schema:givenName Matt
127 rdf:type schema:Person
128 Nf0b430d5dd534ef1af4d19a6664f6080 rdf:first N5490a48784f748fbab437f9e4c29f669
129 rdf:rest Nfc0f56da0fcb47a5960fb21c7acb971d
130 Nf764a80c1a024699aa671684dddc994d rdf:first sg:person.012201216001.24
131 rdf:rest rdf:nil
132 Nfc0f56da0fcb47a5960fb21c7acb971d rdf:first Neceeb0a77ca64c6ba5b644b9721276d4
133 rdf:rest Nd68a26e74e9248908bfc79ceb9a20d3f
134 Nfd2eb195ae7344a5b8dc3e62bfbc02b2 schema:name Automatics Research Group, Pereira, Colombia
135 Universidad Tecnolgica de Pereira, Pereira, Colombia
136 rdf:type schema:Organization
137 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
138 schema:name Information and Computing Sciences
139 rdf:type schema:DefinedTerm
140 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
141 schema:name Artificial Intelligence and Image Processing
142 rdf:type schema:DefinedTerm
143 sg:person.012201216001.24 schema:affiliation N09ce591a96bc473892cfb5a70fec5c4f
144 schema:familyName Orozco-Gutiérrez
145 schema:givenName Álvaro
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012201216001.24
147 rdf:type schema:Person
148 sg:person.01261456124.28 schema:affiliation N78874b8d049f4f2bb3c38495c407a43c
149 schema:familyName Álvarez-Meza
150 schema:givenName Andrés
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261456124.28
152 rdf:type schema:Person
153 sg:pub.10.1007/978-3-319-51811-4_30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026083106
154 https://doi.org/10.1007/978-3-319-51811-4_30
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/978-3-642-15561-1_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045344996
157 https://doi.org/10.1007/978-3-642-15561-1_11
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/s00138-012-0450-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047490759
160 https://doi.org/10.1007/s00138-012-0450-4
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/s11263-012-0594-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011251901
163 https://doi.org/10.1007/s11263-012-0594-8
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/s11263-015-0846-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023517073
166 https://doi.org/10.1007/s11263-015-0846-5
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/s13735-014-0069-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047407114
169 https://doi.org/10.1007/s13735-014-0069-5
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.imavis.2015.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004668147
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1109/tbme.2015.2500585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061530064
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1109/tip.2013.2252622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061643522
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1109/tpami.2017.2655048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079396368
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1117/12.2285510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101391014
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1155/2016/6750459 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012589854
182 rdf:type schema:CreativeWork
183 https://doi.org/10.3389/fnins.2017.00550 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092114708
184 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...