Thermal Prediction for Immersion Cooling Data Centers Based on Recurrent Neural Networks View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-11-09

AUTHORS

Jaime Pérez , Sergio Pérez , José M. Moya , Patricia Arroba

ABSTRACT

In the data center’s scope, current cooling techniques are not very efficient both in terms of energy, consuming up to 40% of the total energy requirements, and in terms of occupied area. This is a critical problem for the development of new smart cities, which require the proliferation of numerous data centers in urban areas, to reduce latency and bandwidth of processing data analytics applications in real time. In this work, we propose a new disruptive solution developed to address this problem, submerging the computing infrastructure in a tank full of a dielectric liquid based on hydro-fluoro-ethers (HFE). Thus, we obtain a passive two phase-cooling system, achieving zero-energy cooling and reducing its area. However, to ensure the maximum heat transfer capacity of the HFE, it is necessary to ensure specific thermal conditions. Making a predictive model is crucial for any system that needs to work around the point of maximum efficiency. Therefore, this research focuses on the implementation of a predictive thermal model, accurate enough to keep the temperature of the cooling system within the maximum efficiency region, under real workload conditions. In this paper, we successfully obtained a predictive thermal model using a neural network architecture based on a Gated Recurrent Unit. This model makes accurate thermal predictions of a real system based on HFE immersion cooling, presenting an average error of 0.75 C with a prediction window of 1 min. More... »

PAGES

491-498

References to SciGraph publications

Book

TITLE

Intelligent Data Engineering and Automated Learning – IDEAL 2018

ISBN

978-3-030-03492-4
978-3-030-03493-1

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-03493-1_51

DOI

http://dx.doi.org/10.1007/978-3-030-03493-1_51

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1109832327


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technical University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.5690.a", 
          "name": [
            "Integrated Systems Laboratory, Universidad Polit\u00e9cnica de Madrid, ETSI Telecomunicaci\u00f3n, Avenida Complutense 30, 28040, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "P\u00e9rez", 
        "givenName": "Jaime", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.5690.a", 
          "name": [
            "Integrated Systems Laboratory, Universidad Polit\u00e9cnica de Madrid, ETSI Telecomunicaci\u00f3n, Avenida Complutense 30, 28040, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "P\u00e9rez", 
        "givenName": "Sergio", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.5690.a", 
          "name": [
            "Integrated Systems Laboratory, Universidad Polit\u00e9cnica de Madrid, ETSI Telecomunicaci\u00f3n, Avenida Complutense 30, 28040, Madrid, Spain", 
            "Center for Computational Simulation, Universidad Polit\u00e9cnica de Madrid, Campus de Montegancedo, Boadilla del Monte, 28660, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moya", 
        "givenName": "Jos\u00e9 M.", 
        "id": "sg:person.07662217004.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07662217004.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.5690.a", 
          "name": [
            "Integrated Systems Laboratory, Universidad Polit\u00e9cnica de Madrid, ETSI Telecomunicaci\u00f3n, Avenida Complutense 30, 28040, Madrid, Spain", 
            "Center for Computational Simulation, Universidad Polit\u00e9cnica de Madrid, Campus de Montegancedo, Boadilla del Monte, 28660, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arroba", 
        "givenName": "Patricia", 
        "id": "sg:person.010703111426.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010703111426.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0925-2312(98)00073-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034032586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.279188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061218423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpds.2008.111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061753280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpds.2014.2325836", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061754651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5120/ijca2016910497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072611888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-018-24271-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103353461", 
          "https://doi.org/10.1038/s41598-018-24271-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11-09", 
    "datePublishedReg": "2018-11-09", 
    "description": "In the data center\u2019s scope, current cooling techniques are not very efficient both in terms of energy, consuming up to 40% of the total energy requirements, and in terms of occupied area. This is a critical problem for the development of new smart cities, which require the proliferation of numerous data centers in urban areas, to reduce latency and bandwidth of processing data analytics applications in real time. In this work, we propose a new disruptive solution developed to address this problem, submerging the computing infrastructure in a tank full of a dielectric liquid based on hydro-fluoro-ethers (HFE). Thus, we obtain a passive two phase-cooling system, achieving zero-energy cooling and reducing its area. However, to ensure the maximum heat transfer capacity of the HFE, it is necessary to ensure specific thermal conditions. Making a predictive model is crucial for any system that needs to work around the point of maximum efficiency. Therefore, this research focuses on the implementation of a predictive thermal model, accurate enough to keep the temperature of the cooling system within the maximum efficiency region, under real workload conditions. In this paper, we successfully obtained a predictive thermal model using a neural network architecture based on a Gated Recurrent Unit. This model makes accurate thermal predictions of a real system based on HFE immersion cooling, presenting an average error of 0.75 C with a prediction window of 1 min.", 
    "editor": [
      {
        "familyName": "Yin", 
        "givenName": "Hujun", 
        "type": "Person"
      }, 
      {
        "familyName": "Camacho", 
        "givenName": "David", 
        "type": "Person"
      }, 
      {
        "familyName": "Novais", 
        "givenName": "Paulo", 
        "type": "Person"
      }, 
      {
        "familyName": "Tall\u00f3n-Ballesteros", 
        "givenName": "Antonio J.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-03493-1_51", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-03492-4", 
        "978-3-030-03493-1"
      ], 
      "name": "Intelligent Data Engineering and Automated Learning \u2013 IDEAL 2018", 
      "type": "Book"
    }, 
    "name": "Thermal Prediction for Immersion Cooling Data Centers Based on Recurrent Neural Networks", 
    "pagination": "491-498", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-03493-1_51"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ace2240b5bd7c5190f30f80b875852d0ff1c3a5d5b353ed9797212e9893b72ef"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1109832327"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-03493-1_51", 
      "https://app.dimensions.ai/details/publication/pub.1109832327"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T04:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000322_0000000322/records_64991_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-030-03493-1_51"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-03493-1_51'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-03493-1_51'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-03493-1_51'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-03493-1_51'


 

This table displays all metadata directly associated to this object as RDF triples.

119 TRIPLES      23 PREDICATES      32 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-03493-1_51 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N483b8eaf0b844ded9abe32ca436c5cfe
4 schema:citation sg:pub.10.1038/s41598-018-24271-9
5 https://doi.org/10.1016/s0925-2312(98)00073-3
6 https://doi.org/10.1109/72.279188
7 https://doi.org/10.1109/tpds.2008.111
8 https://doi.org/10.1109/tpds.2014.2325836
9 https://doi.org/10.5120/ijca2016910497
10 schema:datePublished 2018-11-09
11 schema:datePublishedReg 2018-11-09
12 schema:description In the data center’s scope, current cooling techniques are not very efficient both in terms of energy, consuming up to 40% of the total energy requirements, and in terms of occupied area. This is a critical problem for the development of new smart cities, which require the proliferation of numerous data centers in urban areas, to reduce latency and bandwidth of processing data analytics applications in real time. In this work, we propose a new disruptive solution developed to address this problem, submerging the computing infrastructure in a tank full of a dielectric liquid based on hydro-fluoro-ethers (HFE). Thus, we obtain a passive two phase-cooling system, achieving zero-energy cooling and reducing its area. However, to ensure the maximum heat transfer capacity of the HFE, it is necessary to ensure specific thermal conditions. Making a predictive model is crucial for any system that needs to work around the point of maximum efficiency. Therefore, this research focuses on the implementation of a predictive thermal model, accurate enough to keep the temperature of the cooling system within the maximum efficiency region, under real workload conditions. In this paper, we successfully obtained a predictive thermal model using a neural network architecture based on a Gated Recurrent Unit. This model makes accurate thermal predictions of a real system based on HFE immersion cooling, presenting an average error of 0.75 C with a prediction window of 1 min.
13 schema:editor N8c45dcaa5bfe4b43b586df016706bb3c
14 schema:genre chapter
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf Nef6a1bb21a7a403bb93ad84f2d022994
18 schema:name Thermal Prediction for Immersion Cooling Data Centers Based on Recurrent Neural Networks
19 schema:pagination 491-498
20 schema:productId N0b1f41d455d848538b45927adc1269d8
21 Nb96abc99b468454f8694b42912d76d74
22 Nfdedb4d7d7c74fbea5425dc5ffc74ddb
23 schema:publisher N9164c413c35b4a9cbcb855fdb76b5d93
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109832327
25 https://doi.org/10.1007/978-3-030-03493-1_51
26 schema:sdDatePublished 2019-04-16T04:40
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N041e0d150d114fe29b8e728f0a8e89a1
29 schema:url https://link.springer.com/10.1007%2F978-3-030-03493-1_51
30 sgo:license sg:explorer/license/
31 sgo:sdDataset chapters
32 rdf:type schema:Chapter
33 N041e0d150d114fe29b8e728f0a8e89a1 schema:name Springer Nature - SN SciGraph project
34 rdf:type schema:Organization
35 N07aa957f8c374921b41be2290d129760 rdf:first N404cd6850a0144dba1ad593558c9dd3b
36 rdf:rest Nf99c749991864aa49e846d2f5cf0dc7f
37 N0b1f41d455d848538b45927adc1269d8 schema:name dimensions_id
38 schema:value pub.1109832327
39 rdf:type schema:PropertyValue
40 N18c57171a1654670a05bf27c497d5a6f rdf:first Nf2667797724c4fd9852a397c658b12d1
41 rdf:rest Nbeaf11231d56426fa64d403f3e2859f3
42 N2555a6228cc942e387585c4af18ed969 schema:affiliation https://www.grid.ac/institutes/grid.5690.a
43 schema:familyName Pérez
44 schema:givenName Jaime
45 rdf:type schema:Person
46 N2a5f2b6574ec4e4aa99e87e2e0d3a8b4 rdf:first sg:person.010703111426.38
47 rdf:rest rdf:nil
48 N404cd6850a0144dba1ad593558c9dd3b schema:affiliation https://www.grid.ac/institutes/grid.5690.a
49 schema:familyName Pérez
50 schema:givenName Sergio
51 rdf:type schema:Person
52 N483b8eaf0b844ded9abe32ca436c5cfe rdf:first N2555a6228cc942e387585c4af18ed969
53 rdf:rest N07aa957f8c374921b41be2290d129760
54 N4cc09e3f8c8645bbab0040d96e84e54a schema:familyName Yin
55 schema:givenName Hujun
56 rdf:type schema:Person
57 N8c45dcaa5bfe4b43b586df016706bb3c rdf:first N4cc09e3f8c8645bbab0040d96e84e54a
58 rdf:rest Ne5f85ae0b26743e3a595057d0600a54d
59 N9164c413c35b4a9cbcb855fdb76b5d93 schema:location Cham
60 schema:name Springer International Publishing
61 rdf:type schema:Organisation
62 N9dc0ea016dec495eaa6ee3bb2b20a043 schema:familyName Tallón-Ballesteros
63 schema:givenName Antonio J.
64 rdf:type schema:Person
65 Nb96abc99b468454f8694b42912d76d74 schema:name readcube_id
66 schema:value ace2240b5bd7c5190f30f80b875852d0ff1c3a5d5b353ed9797212e9893b72ef
67 rdf:type schema:PropertyValue
68 Nbeaf11231d56426fa64d403f3e2859f3 rdf:first N9dc0ea016dec495eaa6ee3bb2b20a043
69 rdf:rest rdf:nil
70 Ne3fdae31aa534962979b2832979b15be schema:familyName Camacho
71 schema:givenName David
72 rdf:type schema:Person
73 Ne5f85ae0b26743e3a595057d0600a54d rdf:first Ne3fdae31aa534962979b2832979b15be
74 rdf:rest N18c57171a1654670a05bf27c497d5a6f
75 Nef6a1bb21a7a403bb93ad84f2d022994 schema:isbn 978-3-030-03492-4
76 978-3-030-03493-1
77 schema:name Intelligent Data Engineering and Automated Learning – IDEAL 2018
78 rdf:type schema:Book
79 Nf2667797724c4fd9852a397c658b12d1 schema:familyName Novais
80 schema:givenName Paulo
81 rdf:type schema:Person
82 Nf99c749991864aa49e846d2f5cf0dc7f rdf:first sg:person.07662217004.56
83 rdf:rest N2a5f2b6574ec4e4aa99e87e2e0d3a8b4
84 Nfdedb4d7d7c74fbea5425dc5ffc74ddb schema:name doi
85 schema:value 10.1007/978-3-030-03493-1_51
86 rdf:type schema:PropertyValue
87 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
88 schema:name Engineering
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
91 schema:name Interdisciplinary Engineering
92 rdf:type schema:DefinedTerm
93 sg:person.010703111426.38 schema:affiliation https://www.grid.ac/institutes/grid.5690.a
94 schema:familyName Arroba
95 schema:givenName Patricia
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010703111426.38
97 rdf:type schema:Person
98 sg:person.07662217004.56 schema:affiliation https://www.grid.ac/institutes/grid.5690.a
99 schema:familyName Moya
100 schema:givenName José M.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07662217004.56
102 rdf:type schema:Person
103 sg:pub.10.1038/s41598-018-24271-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103353461
104 https://doi.org/10.1038/s41598-018-24271-9
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/s0925-2312(98)00073-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034032586
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1109/72.279188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061218423
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1109/tpds.2008.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061753280
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1109/tpds.2014.2325836 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061754651
113 rdf:type schema:CreativeWork
114 https://doi.org/10.5120/ijca2016910497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072611888
115 rdf:type schema:CreativeWork
116 https://www.grid.ac/institutes/grid.5690.a schema:alternateName Technical University of Madrid
117 schema:name Center for Computational Simulation, Universidad Politécnica de Madrid, Campus de Montegancedo, Boadilla del Monte, 28660, Madrid, Spain
118 Integrated Systems Laboratory, Universidad Politécnica de Madrid, ETSI Telecomunicación, Avenida Complutense 30, 28040, Madrid, Spain
119 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...