Thermal Prediction for Immersion Cooling Data Centers Based on Recurrent Neural Networks View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-11-09

AUTHORS

Jaime Pérez , Sergio Pérez , José M. Moya , Patricia Arroba

ABSTRACT

In the data center’s scope, current cooling techniques are not very efficient both in terms of energy, consuming up to 40% of the total energy requirements, and in terms of occupied area. This is a critical problem for the development of new smart cities, which require the proliferation of numerous data centers in urban areas, to reduce latency and bandwidth of processing data analytics applications in real time. In this work, we propose a new disruptive solution developed to address this problem, submerging the computing infrastructure in a tank full of a dielectric liquid based on hydro-fluoro-ethers (HFE). Thus, we obtain a passive two phase-cooling system, achieving zero-energy cooling and reducing its area. However, to ensure the maximum heat transfer capacity of the HFE, it is necessary to ensure specific thermal conditions. Making a predictive model is crucial for any system that needs to work around the point of maximum efficiency. Therefore, this research focuses on the implementation of a predictive thermal model, accurate enough to keep the temperature of the cooling system within the maximum efficiency region, under real workload conditions. In this paper, we successfully obtained a predictive thermal model using a neural network architecture based on a Gated Recurrent Unit. This model makes accurate thermal predictions of a real system based on HFE immersion cooling, presenting an average error of 0.75 C with a prediction window of 1 min. More... »

PAGES

491-498

References to SciGraph publications

Book

TITLE

Intelligent Data Engineering and Automated Learning – IDEAL 2018

ISBN

978-3-030-03492-4
978-3-030-03493-1

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-03493-1_51

DOI

http://dx.doi.org/10.1007/978-3-030-03493-1_51

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1109832327


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technical University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.5690.a", 
          "name": [
            "Integrated Systems Laboratory, Universidad Polit\u00e9cnica de Madrid, ETSI Telecomunicaci\u00f3n, Avenida Complutense 30, 28040, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "P\u00e9rez", 
        "givenName": "Jaime", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.5690.a", 
          "name": [
            "Integrated Systems Laboratory, Universidad Polit\u00e9cnica de Madrid, ETSI Telecomunicaci\u00f3n, Avenida Complutense 30, 28040, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "P\u00e9rez", 
        "givenName": "Sergio", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.5690.a", 
          "name": [
            "Integrated Systems Laboratory, Universidad Polit\u00e9cnica de Madrid, ETSI Telecomunicaci\u00f3n, Avenida Complutense 30, 28040, Madrid, Spain", 
            "Center for Computational Simulation, Universidad Polit\u00e9cnica de Madrid, Campus de Montegancedo, Boadilla del Monte, 28660, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moya", 
        "givenName": "Jos\u00e9 M.", 
        "id": "sg:person.07662217004.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07662217004.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.5690.a", 
          "name": [
            "Integrated Systems Laboratory, Universidad Polit\u00e9cnica de Madrid, ETSI Telecomunicaci\u00f3n, Avenida Complutense 30, 28040, Madrid, Spain", 
            "Center for Computational Simulation, Universidad Polit\u00e9cnica de Madrid, Campus de Montegancedo, Boadilla del Monte, 28660, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arroba", 
        "givenName": "Patricia", 
        "id": "sg:person.010703111426.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010703111426.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0925-2312(98)00073-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034032586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.279188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061218423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpds.2008.111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061753280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpds.2014.2325836", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061754651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5120/ijca2016910497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072611888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-018-24271-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103353461", 
          "https://doi.org/10.1038/s41598-018-24271-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11-09", 
    "datePublishedReg": "2018-11-09", 
    "description": "In the data center\u2019s scope, current cooling techniques are not very efficient both in terms of energy, consuming up to 40% of the total energy requirements, and in terms of occupied area. This is a critical problem for the development of new smart cities, which require the proliferation of numerous data centers in urban areas, to reduce latency and bandwidth of processing data analytics applications in real time. In this work, we propose a new disruptive solution developed to address this problem, submerging the computing infrastructure in a tank full of a dielectric liquid based on hydro-fluoro-ethers (HFE). Thus, we obtain a passive two phase-cooling system, achieving zero-energy cooling and reducing its area. However, to ensure the maximum heat transfer capacity of the HFE, it is necessary to ensure specific thermal conditions. Making a predictive model is crucial for any system that needs to work around the point of maximum efficiency. Therefore, this research focuses on the implementation of a predictive thermal model, accurate enough to keep the temperature of the cooling system within the maximum efficiency region, under real workload conditions. In this paper, we successfully obtained a predictive thermal model using a neural network architecture based on a Gated Recurrent Unit. This model makes accurate thermal predictions of a real system based on HFE immersion cooling, presenting an average error of 0.75 C with a prediction window of 1 min.", 
    "editor": [
      {
        "familyName": "Yin", 
        "givenName": "Hujun", 
        "type": "Person"
      }, 
      {
        "familyName": "Camacho", 
        "givenName": "David", 
        "type": "Person"
      }, 
      {
        "familyName": "Novais", 
        "givenName": "Paulo", 
        "type": "Person"
      }, 
      {
        "familyName": "Tall\u00f3n-Ballesteros", 
        "givenName": "Antonio J.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-03493-1_51", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-03492-4", 
        "978-3-030-03493-1"
      ], 
      "name": "Intelligent Data Engineering and Automated Learning \u2013 IDEAL 2018", 
      "type": "Book"
    }, 
    "name": "Thermal Prediction for Immersion Cooling Data Centers Based on Recurrent Neural Networks", 
    "pagination": "491-498", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-03493-1_51"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ace2240b5bd7c5190f30f80b875852d0ff1c3a5d5b353ed9797212e9893b72ef"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1109832327"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-03493-1_51", 
      "https://app.dimensions.ai/details/publication/pub.1109832327"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T04:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000322_0000000322/records_64991_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-030-03493-1_51"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-03493-1_51'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-03493-1_51'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-03493-1_51'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-03493-1_51'


 

This table displays all metadata directly associated to this object as RDF triples.

119 TRIPLES      23 PREDICATES      32 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-03493-1_51 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N23da1398ed03491aa77196cb37c2511c
4 schema:citation sg:pub.10.1038/s41598-018-24271-9
5 https://doi.org/10.1016/s0925-2312(98)00073-3
6 https://doi.org/10.1109/72.279188
7 https://doi.org/10.1109/tpds.2008.111
8 https://doi.org/10.1109/tpds.2014.2325836
9 https://doi.org/10.5120/ijca2016910497
10 schema:datePublished 2018-11-09
11 schema:datePublishedReg 2018-11-09
12 schema:description In the data center’s scope, current cooling techniques are not very efficient both in terms of energy, consuming up to 40% of the total energy requirements, and in terms of occupied area. This is a critical problem for the development of new smart cities, which require the proliferation of numerous data centers in urban areas, to reduce latency and bandwidth of processing data analytics applications in real time. In this work, we propose a new disruptive solution developed to address this problem, submerging the computing infrastructure in a tank full of a dielectric liquid based on hydro-fluoro-ethers (HFE). Thus, we obtain a passive two phase-cooling system, achieving zero-energy cooling and reducing its area. However, to ensure the maximum heat transfer capacity of the HFE, it is necessary to ensure specific thermal conditions. Making a predictive model is crucial for any system that needs to work around the point of maximum efficiency. Therefore, this research focuses on the implementation of a predictive thermal model, accurate enough to keep the temperature of the cooling system within the maximum efficiency region, under real workload conditions. In this paper, we successfully obtained a predictive thermal model using a neural network architecture based on a Gated Recurrent Unit. This model makes accurate thermal predictions of a real system based on HFE immersion cooling, presenting an average error of 0.75 C with a prediction window of 1 min.
13 schema:editor N3b21ea9a4694428192ad345caa7fb14e
14 schema:genre chapter
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N55c0fbd280334f2ca119516af259ed7d
18 schema:name Thermal Prediction for Immersion Cooling Data Centers Based on Recurrent Neural Networks
19 schema:pagination 491-498
20 schema:productId N2b3872aea22d45eea811274ced1e1f8a
21 Ncba955e97d59430bbd906c3707fedd7b
22 Ne16a34d667824ce2a82ce462093d0d35
23 schema:publisher N7dc59e054bac48e38c48e7bf570690f3
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109832327
25 https://doi.org/10.1007/978-3-030-03493-1_51
26 schema:sdDatePublished 2019-04-16T04:40
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N575f64e0843f458cbea1ec0ebafbebbb
29 schema:url https://link.springer.com/10.1007%2F978-3-030-03493-1_51
30 sgo:license sg:explorer/license/
31 sgo:sdDataset chapters
32 rdf:type schema:Chapter
33 N0da72db7012c463d8189821af4d2452d rdf:first Nce4d8b66fa004a838a1d5654851c254d
34 rdf:rest N9735b36915724319ad9493a1b946dfaf
35 N1a46b5d7cbc744aa87c655b959c6daa3 schema:familyName Novais
36 schema:givenName Paulo
37 rdf:type schema:Person
38 N23da1398ed03491aa77196cb37c2511c rdf:first N42364a4faeb74a06afcd14fd2a8d488a
39 rdf:rest Ndc9432da94a545caac2b3e77c9a76f1c
40 N2b3872aea22d45eea811274ced1e1f8a schema:name dimensions_id
41 schema:value pub.1109832327
42 rdf:type schema:PropertyValue
43 N3b21ea9a4694428192ad345caa7fb14e rdf:first N3fb969f1bd4d425198eb66c6c3716c27
44 rdf:rest N0da72db7012c463d8189821af4d2452d
45 N3fb969f1bd4d425198eb66c6c3716c27 schema:familyName Yin
46 schema:givenName Hujun
47 rdf:type schema:Person
48 N42364a4faeb74a06afcd14fd2a8d488a schema:affiliation https://www.grid.ac/institutes/grid.5690.a
49 schema:familyName Pérez
50 schema:givenName Jaime
51 rdf:type schema:Person
52 N55c0fbd280334f2ca119516af259ed7d schema:isbn 978-3-030-03492-4
53 978-3-030-03493-1
54 schema:name Intelligent Data Engineering and Automated Learning – IDEAL 2018
55 rdf:type schema:Book
56 N575f64e0843f458cbea1ec0ebafbebbb schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 N67af235f7f3f4875b59b24470f501b04 rdf:first sg:person.010703111426.38
59 rdf:rest rdf:nil
60 N7dc59e054bac48e38c48e7bf570690f3 schema:location Cham
61 schema:name Springer International Publishing
62 rdf:type schema:Organisation
63 N9735b36915724319ad9493a1b946dfaf rdf:first N1a46b5d7cbc744aa87c655b959c6daa3
64 rdf:rest Na76488bbe4e44c43bc29355495f6c678
65 Na761357b205d446f9dd4ee40a3793db0 rdf:first sg:person.07662217004.56
66 rdf:rest N67af235f7f3f4875b59b24470f501b04
67 Na76488bbe4e44c43bc29355495f6c678 rdf:first Nbcaf94e0e62a4d3eb9b31480e0f15911
68 rdf:rest rdf:nil
69 Nbcaf94e0e62a4d3eb9b31480e0f15911 schema:familyName Tallón-Ballesteros
70 schema:givenName Antonio J.
71 rdf:type schema:Person
72 Ncba955e97d59430bbd906c3707fedd7b schema:name doi
73 schema:value 10.1007/978-3-030-03493-1_51
74 rdf:type schema:PropertyValue
75 Nce4d8b66fa004a838a1d5654851c254d schema:familyName Camacho
76 schema:givenName David
77 rdf:type schema:Person
78 Ndc9432da94a545caac2b3e77c9a76f1c rdf:first Nf4eb0d6b99d640ff993a97e06adb6792
79 rdf:rest Na761357b205d446f9dd4ee40a3793db0
80 Ne16a34d667824ce2a82ce462093d0d35 schema:name readcube_id
81 schema:value ace2240b5bd7c5190f30f80b875852d0ff1c3a5d5b353ed9797212e9893b72ef
82 rdf:type schema:PropertyValue
83 Nf4eb0d6b99d640ff993a97e06adb6792 schema:affiliation https://www.grid.ac/institutes/grid.5690.a
84 schema:familyName Pérez
85 schema:givenName Sergio
86 rdf:type schema:Person
87 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
88 schema:name Engineering
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
91 schema:name Interdisciplinary Engineering
92 rdf:type schema:DefinedTerm
93 sg:person.010703111426.38 schema:affiliation https://www.grid.ac/institutes/grid.5690.a
94 schema:familyName Arroba
95 schema:givenName Patricia
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010703111426.38
97 rdf:type schema:Person
98 sg:person.07662217004.56 schema:affiliation https://www.grid.ac/institutes/grid.5690.a
99 schema:familyName Moya
100 schema:givenName José M.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07662217004.56
102 rdf:type schema:Person
103 sg:pub.10.1038/s41598-018-24271-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103353461
104 https://doi.org/10.1038/s41598-018-24271-9
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/s0925-2312(98)00073-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034032586
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1109/72.279188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061218423
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1109/tpds.2008.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061753280
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1109/tpds.2014.2325836 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061754651
113 rdf:type schema:CreativeWork
114 https://doi.org/10.5120/ijca2016910497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072611888
115 rdf:type schema:CreativeWork
116 https://www.grid.ac/institutes/grid.5690.a schema:alternateName Technical University of Madrid
117 schema:name Center for Computational Simulation, Universidad Politécnica de Madrid, Campus de Montegancedo, Boadilla del Monte, 28660, Madrid, Spain
118 Integrated Systems Laboratory, Universidad Politécnica de Madrid, ETSI Telecomunicación, Avenida Complutense 30, 28040, Madrid, Spain
119 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...