A Multi-modal Urban Traffic Agent-Based Framework to Study Individual Response to Catastrophic Events View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-10-24

AUTHORS

Kevin Chapuis , Patrick Taillandier , Benoit Gaudou , Alexis Drogoul , Eric Daudé

ABSTRACT

Urban traffic is made of a variety of mobility modes that have to be taken into account to explore the impact of catastrophic event. From individual mobility behaviors to macroscopic traffic dynamics, agent-based modeling provides an interesting conceptual framework to study this question. Unfortunately, most proposals in the domain do not provide any simple way to model these multi-modal trajectories, and thus fell short at simulating in a credible way the outcomes of a catastrophic event, like natural or industrial hazards. This paper presents an agent-based framework implemented with the GAMA modeling platform that aims at overcoming this lack. An application of this model for the study of flood crisis in a district of Hanoi (Vietnam) is presented. More... »

PAGES

440-448

References to SciGraph publications

  • 2015. MOSAIIC: City-Level Agent-Based Traffic Simulation Adapted to Emergency Situations in PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON SOCIAL MODELING AND SIMULATION, PLUS ECONOPHYSICS COLLOQUIUM 2014
  • 2013. GAMA 1.6: Advancing the Art of Complex Agent-Based Modeling and Simulation in PRIMA 2013: PRINCIPLES AND PRACTICE OF MULTI-AGENT SYSTEMS
  • 2014. Simulation of City Evacuation Coupled to Flood Dynamics in PEDESTRIAN AND EVACUATION DYNAMICS 2012
  • 2014. Crisis Mobility of Pedestrians: From Survey to Modelling, Lessons from Lebanon and Argentina in INFORMATION SYSTEMS FOR CRISIS RESPONSE AND MANAGEMENT IN MEDITERRANEAN COUNTRIES
  • 2015. Reproducing and Exploring Past Events Using Agent-Based Geo-Historical Models in MULTI-AGENT-BASED SIMULATION XV
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-030-03098-8_28

    DOI

    http://dx.doi.org/10.1007/978-3-030-03098-8_28

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1107803659


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Unit\u00e9 Mixte Internationnale de Mod\u00e9lisation Math\u00e9matique et Informatiques des Syst\u00e8mes Compl\u00e8xes", 
              "id": "https://www.grid.ac/institutes/grid.464114.2", 
              "name": [
                "Sorbonne University, IRD, UMMISCO, 93143, Bondy, France", 
                "USTH - AVAST, ICTLab, Hanoi, Vietnam"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chapuis", 
            "givenName": "Kevin", 
            "id": "sg:person.010464756560.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010464756560.69"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "MIAT, University of Toulouse, INRA, Castanet-Tolosan, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Taillandier", 
            "givenName": "Patrick", 
            "id": "sg:person.010126672523.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010126672523.68"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Toulouse Institute of Computer Science Research", 
              "id": "https://www.grid.ac/institutes/grid.454304.2", 
              "name": [
                "Sorbonne University, IRD, UMMISCO, 93143, Bondy, France", 
                "University Toulouse Capitole, IRIT, Toulouse, France", 
                "USTH - AVAST, ICTLab, Hanoi, Vietnam"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gaudou", 
            "givenName": "Benoit", 
            "id": "sg:person.011056232320.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011056232320.95"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Unit\u00e9 Mixte Internationnale de Mod\u00e9lisation Math\u00e9matique et Informatiques des Syst\u00e8mes Compl\u00e8xes", 
              "id": "https://www.grid.ac/institutes/grid.464114.2", 
              "name": [
                "Sorbonne University, IRD, UMMISCO, 93143, Bondy, France", 
                "USTH - AVAST, ICTLab, Hanoi, Vietnam"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Drogoul", 
            "givenName": "Alexis", 
            "id": "sg:person.013046461323.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013046461323.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Rouen", 
              "id": "https://www.grid.ac/institutes/grid.10400.35", 
              "name": [
                "CNRS, Rouen University, UMR IDEES, Rouen, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Daud\u00e9", 
            "givenName": "Eric", 
            "id": "sg:person.010064022623.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010064022623.32"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-319-11818-5_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000988347", 
              "https://doi.org/10.1007/978-3-319-11818-5_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2379776.2379784", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007873794"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-20591-5_24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012841511", 
              "https://doi.org/10.1007/978-3-319-20591-5_24"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.procs.2016.04.154", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018887499"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-44927-7_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020998454", 
              "https://doi.org/10.1007/978-3-642-44927-7_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1108/9781848557512-011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021322468"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.51.4282", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028250488"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.51.4282", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028250488"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-14627-0_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030125512", 
              "https://doi.org/10.1007/978-3-319-14627-0_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0269888913000118", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030441288"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1037676873", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-02447-9_40", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044862546", 
              "https://doi.org/10.1007/978-3-319-02447-9_40"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.trc.2015.11.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047955312"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1553/giscience2015s567", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1087270353"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.18564/jasss.3395", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090469938"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cis.2007.209", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094945925"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1108/9781848557512", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098782969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/13658816.2018.1440563", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101246440"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-10-24", 
        "datePublishedReg": "2018-10-24", 
        "description": "Urban traffic is made of a variety of mobility modes that have to be taken into account to explore the impact of catastrophic event. From individual mobility behaviors to macroscopic traffic dynamics, agent-based modeling provides an interesting conceptual framework to study this question. Unfortunately, most proposals in the domain do not provide any simple way to model these multi-modal trajectories, and thus fell short at simulating in a credible way the outcomes of a catastrophic event, like natural or industrial hazards. This paper presents an agent-based framework implemented with the GAMA modeling platform that aims at overcoming this lack. An application of this model for the study of flood crisis in a district of Hanoi (Vietnam) is presented.", 
        "editor": [
          {
            "familyName": "Miller", 
            "givenName": "Tim", 
            "type": "Person"
          }, 
          {
            "familyName": "Oren", 
            "givenName": "Nir", 
            "type": "Person"
          }, 
          {
            "familyName": "Sakurai", 
            "givenName": "Yuko", 
            "type": "Person"
          }, 
          {
            "familyName": "Noda", 
            "givenName": "Itsuki", 
            "type": "Person"
          }, 
          {
            "familyName": "Savarimuthu", 
            "givenName": "Bastin Tony Roy", 
            "type": "Person"
          }, 
          {
            "familyName": "Cao Son", 
            "givenName": "Tran", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-030-03098-8_28", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-030-03097-1", 
            "978-3-030-03098-8"
          ], 
          "name": "PRIMA 2018: Principles and Practice of Multi-Agent Systems", 
          "type": "Book"
        }, 
        "name": "A Multi-modal Urban Traffic Agent-Based Framework to Study Individual Response to Catastrophic Events", 
        "pagination": "440-448", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-030-03098-8_28"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "3a3e03f3cb85c1a5ab2e1913865586a4a4ebb45ab264e2c2092f8ad84d0cd094"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1107803659"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-030-03098-8_28", 
          "https://app.dimensions.ai/details/publication/pub.1107803659"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T04:41", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000322_0000000322/records_65020_00000000.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-3-030-03098-8_28"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-03098-8_28'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-03098-8_28'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-03098-8_28'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-03098-8_28'


     

    This table displays all metadata directly associated to this object as RDF triples.

    184 TRIPLES      23 PREDICATES      43 URIs      19 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-030-03098-8_28 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N309c12b4577c4bc4b5e3f428b46b9f3a
    4 schema:citation sg:pub.10.1007/978-3-319-02447-9_40
    5 sg:pub.10.1007/978-3-319-11818-5_6
    6 sg:pub.10.1007/978-3-319-14627-0_11
    7 sg:pub.10.1007/978-3-319-20591-5_24
    8 sg:pub.10.1007/978-3-642-44927-7_9
    9 https://app.dimensions.ai/details/publication/pub.1037676873
    10 https://doi.org/10.1016/j.procs.2016.04.154
    11 https://doi.org/10.1016/j.trc.2015.11.010
    12 https://doi.org/10.1017/s0269888913000118
    13 https://doi.org/10.1080/13658816.2018.1440563
    14 https://doi.org/10.1103/physreve.51.4282
    15 https://doi.org/10.1108/9781848557512
    16 https://doi.org/10.1108/9781848557512-011
    17 https://doi.org/10.1109/cis.2007.209
    18 https://doi.org/10.1145/2379776.2379784
    19 https://doi.org/10.1553/giscience2015s567
    20 https://doi.org/10.18564/jasss.3395
    21 schema:datePublished 2018-10-24
    22 schema:datePublishedReg 2018-10-24
    23 schema:description Urban traffic is made of a variety of mobility modes that have to be taken into account to explore the impact of catastrophic event. From individual mobility behaviors to macroscopic traffic dynamics, agent-based modeling provides an interesting conceptual framework to study this question. Unfortunately, most proposals in the domain do not provide any simple way to model these multi-modal trajectories, and thus fell short at simulating in a credible way the outcomes of a catastrophic event, like natural or industrial hazards. This paper presents an agent-based framework implemented with the GAMA modeling platform that aims at overcoming this lack. An application of this model for the study of flood crisis in a district of Hanoi (Vietnam) is presented.
    24 schema:editor Na674c543f19d43b5b0b9a46f29b93f8b
    25 schema:genre chapter
    26 schema:inLanguage en
    27 schema:isAccessibleForFree false
    28 schema:isPartOf N451f61fe10de430dbc77af8297349483
    29 schema:name A Multi-modal Urban Traffic Agent-Based Framework to Study Individual Response to Catastrophic Events
    30 schema:pagination 440-448
    31 schema:productId N8428c87236f2448898fc966a4f3ca0c8
    32 Nc834f2531e6341f68308f6ddce334a80
    33 Nec689af24aa74c61aa26dc155aa2c137
    34 schema:publisher N679056c991034d82880973e26364b514
    35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107803659
    36 https://doi.org/10.1007/978-3-030-03098-8_28
    37 schema:sdDatePublished 2019-04-16T04:41
    38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    39 schema:sdPublisher Nef1efcdcd5a34a72acbee54ac1e60384
    40 schema:url https://link.springer.com/10.1007%2F978-3-030-03098-8_28
    41 sgo:license sg:explorer/license/
    42 sgo:sdDataset chapters
    43 rdf:type schema:Chapter
    44 N0030137c2c8f43568d71a114e7707f50 schema:name MIAT, University of Toulouse, INRA, Castanet-Tolosan, France
    45 rdf:type schema:Organization
    46 N020b0cb1f8b04415bd9ab945af0d46cd rdf:first Ne66699ab90984ffbae8f076dc8eb5999
    47 rdf:rest N3fb950449a294571907e3ee46fe3d8b8
    48 N2b91760f5efa43da89e09e2067534f15 schema:familyName Savarimuthu
    49 schema:givenName Bastin Tony Roy
    50 rdf:type schema:Person
    51 N309c12b4577c4bc4b5e3f428b46b9f3a rdf:first sg:person.010464756560.69
    52 rdf:rest N7d809e34bfb64966b8a84e308d4b3f59
    53 N3fb950449a294571907e3ee46fe3d8b8 rdf:first N2b91760f5efa43da89e09e2067534f15
    54 rdf:rest N8a3d04837d364ef78f119929ad5b15a4
    55 N4152c80c17014b93959dbd4b16289e69 rdf:first Ndb2febdc836b4eaf877c95320dc06acb
    56 rdf:rest Nac35ea47b37441978d2662f2089c88ce
    57 N451f61fe10de430dbc77af8297349483 schema:isbn 978-3-030-03097-1
    58 978-3-030-03098-8
    59 schema:name PRIMA 2018: Principles and Practice of Multi-Agent Systems
    60 rdf:type schema:Book
    61 N58e754545d8d4a21812fdb0030a90535 rdf:first sg:person.010064022623.32
    62 rdf:rest rdf:nil
    63 N679056c991034d82880973e26364b514 schema:location Cham
    64 schema:name Springer International Publishing
    65 rdf:type schema:Organisation
    66 N7d809e34bfb64966b8a84e308d4b3f59 rdf:first sg:person.010126672523.68
    67 rdf:rest Nfeb95caa56b542f2ae56ea452b4443a2
    68 N8428c87236f2448898fc966a4f3ca0c8 schema:name doi
    69 schema:value 10.1007/978-3-030-03098-8_28
    70 rdf:type schema:PropertyValue
    71 N8a3d04837d364ef78f119929ad5b15a4 rdf:first Nc83872a441b54baf82e7ab6c0352572a
    72 rdf:rest rdf:nil
    73 N9d3f9a3cc11e48b3a459d020b2399d63 rdf:first sg:person.013046461323.11
    74 rdf:rest N58e754545d8d4a21812fdb0030a90535
    75 Na0d9f66716b846dfaa998684515d7c9a schema:familyName Sakurai
    76 schema:givenName Yuko
    77 rdf:type schema:Person
    78 Na674c543f19d43b5b0b9a46f29b93f8b rdf:first Nb3c0d68ee57641d6aac274e04c42bcba
    79 rdf:rest N4152c80c17014b93959dbd4b16289e69
    80 Nac35ea47b37441978d2662f2089c88ce rdf:first Na0d9f66716b846dfaa998684515d7c9a
    81 rdf:rest N020b0cb1f8b04415bd9ab945af0d46cd
    82 Nb3c0d68ee57641d6aac274e04c42bcba schema:familyName Miller
    83 schema:givenName Tim
    84 rdf:type schema:Person
    85 Nc834f2531e6341f68308f6ddce334a80 schema:name readcube_id
    86 schema:value 3a3e03f3cb85c1a5ab2e1913865586a4a4ebb45ab264e2c2092f8ad84d0cd094
    87 rdf:type schema:PropertyValue
    88 Nc83872a441b54baf82e7ab6c0352572a schema:familyName Cao Son
    89 schema:givenName Tran
    90 rdf:type schema:Person
    91 Ndb2febdc836b4eaf877c95320dc06acb schema:familyName Oren
    92 schema:givenName Nir
    93 rdf:type schema:Person
    94 Ne66699ab90984ffbae8f076dc8eb5999 schema:familyName Noda
    95 schema:givenName Itsuki
    96 rdf:type schema:Person
    97 Nec689af24aa74c61aa26dc155aa2c137 schema:name dimensions_id
    98 schema:value pub.1107803659
    99 rdf:type schema:PropertyValue
    100 Nef1efcdcd5a34a72acbee54ac1e60384 schema:name Springer Nature - SN SciGraph project
    101 rdf:type schema:Organization
    102 Nfeb95caa56b542f2ae56ea452b4443a2 rdf:first sg:person.011056232320.95
    103 rdf:rest N9d3f9a3cc11e48b3a459d020b2399d63
    104 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    105 schema:name Information and Computing Sciences
    106 rdf:type schema:DefinedTerm
    107 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    108 schema:name Artificial Intelligence and Image Processing
    109 rdf:type schema:DefinedTerm
    110 sg:person.010064022623.32 schema:affiliation https://www.grid.ac/institutes/grid.10400.35
    111 schema:familyName Daudé
    112 schema:givenName Eric
    113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010064022623.32
    114 rdf:type schema:Person
    115 sg:person.010126672523.68 schema:affiliation N0030137c2c8f43568d71a114e7707f50
    116 schema:familyName Taillandier
    117 schema:givenName Patrick
    118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010126672523.68
    119 rdf:type schema:Person
    120 sg:person.010464756560.69 schema:affiliation https://www.grid.ac/institutes/grid.464114.2
    121 schema:familyName Chapuis
    122 schema:givenName Kevin
    123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010464756560.69
    124 rdf:type schema:Person
    125 sg:person.011056232320.95 schema:affiliation https://www.grid.ac/institutes/grid.454304.2
    126 schema:familyName Gaudou
    127 schema:givenName Benoit
    128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011056232320.95
    129 rdf:type schema:Person
    130 sg:person.013046461323.11 schema:affiliation https://www.grid.ac/institutes/grid.464114.2
    131 schema:familyName Drogoul
    132 schema:givenName Alexis
    133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013046461323.11
    134 rdf:type schema:Person
    135 sg:pub.10.1007/978-3-319-02447-9_40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044862546
    136 https://doi.org/10.1007/978-3-319-02447-9_40
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1007/978-3-319-11818-5_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000988347
    139 https://doi.org/10.1007/978-3-319-11818-5_6
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1007/978-3-319-14627-0_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030125512
    142 https://doi.org/10.1007/978-3-319-14627-0_11
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1007/978-3-319-20591-5_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012841511
    145 https://doi.org/10.1007/978-3-319-20591-5_24
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1007/978-3-642-44927-7_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020998454
    148 https://doi.org/10.1007/978-3-642-44927-7_9
    149 rdf:type schema:CreativeWork
    150 https://app.dimensions.ai/details/publication/pub.1037676873 schema:CreativeWork
    151 https://doi.org/10.1016/j.procs.2016.04.154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018887499
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1016/j.trc.2015.11.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047955312
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1017/s0269888913000118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030441288
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1080/13658816.2018.1440563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101246440
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1103/physreve.51.4282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028250488
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1108/9781848557512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098782969
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1108/9781848557512-011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021322468
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1109/cis.2007.209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094945925
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1145/2379776.2379784 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007873794
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1553/giscience2015s567 schema:sameAs https://app.dimensions.ai/details/publication/pub.1087270353
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.18564/jasss.3395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090469938
    172 rdf:type schema:CreativeWork
    173 https://www.grid.ac/institutes/grid.10400.35 schema:alternateName University of Rouen
    174 schema:name CNRS, Rouen University, UMR IDEES, Rouen, France
    175 rdf:type schema:Organization
    176 https://www.grid.ac/institutes/grid.454304.2 schema:alternateName Toulouse Institute of Computer Science Research
    177 schema:name Sorbonne University, IRD, UMMISCO, 93143, Bondy, France
    178 USTH - AVAST, ICTLab, Hanoi, Vietnam
    179 University Toulouse Capitole, IRIT, Toulouse, France
    180 rdf:type schema:Organization
    181 https://www.grid.ac/institutes/grid.464114.2 schema:alternateName Unité Mixte Internationnale de Modélisation Mathématique et Informatiques des Systèmes Complèxes
    182 schema:name Sorbonne University, IRD, UMMISCO, 93143, Bondy, France
    183 USTH - AVAST, ICTLab, Hanoi, Vietnam
    184 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...