Optimal Dimensionality Reduced Quantum Walk and Noise Characterization View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-10-18

AUTHORS

Chen-Fu Chiang

ABSTRACT

In a recent work by Novo et al. (Sci. Rep. , 13304, 2015), the invariant subspace method was applied to the study of continuous-time quantum walk (CTQW). In this work, we adopt the aforementioned method to investigate the optimality of a perturbed quantum walk search of a marked element in a noisy environment on various graphs. We formulate the necessary condition of the noise distribution in the system such that the invariant subspace method remains effective and efficient. Based on the noise, we further formulate how to set the appropriate coupling factor to preserve the optimality of the quantum walker. Thus, a quantum walker based on an N by N Hamiltonian can be efficiently implemented using the near-term quantum technology. More... »

PAGES

914-929

Book

TITLE

Proceedings of the Future Technologies Conference (FTC) 2018

ISBN

978-3-030-02685-1
978-3-030-02686-8

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-02686-8_68

DOI

http://dx.doi.org/10.1007/978-3-030-02686-8_68

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107688643


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "SUNY Polytechnic Institute", 
          "id": "https://www.grid.ac/institutes/grid.441535.2", 
          "name": [
            "State University of New York Polytechnic Institute, 13502, Utica, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chiang", 
        "givenName": "Chen-Fu", 
        "id": "sg:person.07770013413.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07770013413.87"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/srep13304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004751550", 
          "https://doi.org/10.1038/srep13304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/780542.780552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006574725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep20362", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019766698", 
          "https://doi.org/10.1038/srep20362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.58.915", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021026363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.58.915", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021026363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-009-0930-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027723497", 
          "https://doi.org/10.1007/s00220-009-0930-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-009-0930-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027723497", 
          "https://doi.org/10.1007/s00220-009-0930-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-009-0930-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027723497", 
          "https://doi.org/10.1007/s00220-009-0930-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.70.022314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046853004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.70.022314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046853004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.48.1687", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060487628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.48.1687", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060487628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/050643684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062846669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0097539705447311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062879612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/focs.2007.18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093698999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.98.022316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106135643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.98.022316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106135643"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-10-18", 
    "datePublishedReg": "2018-10-18", 
    "description": "In a recent work by Novo et al. (Sci. Rep. , 13304, 2015), the invariant subspace method was applied to the study of continuous-time quantum walk (CTQW). In this work, we adopt the aforementioned method to investigate the optimality of a perturbed quantum walk search of a marked element in a noisy environment on various graphs. We formulate the necessary condition of the noise distribution in the system such that the invariant subspace method remains effective and efficient. Based on the noise, we further formulate how to set the appropriate coupling factor to preserve the optimality of the quantum walker. Thus, a quantum walker based on an N by N Hamiltonian can be efficiently implemented using the near-term quantum technology.", 
    "editor": [
      {
        "familyName": "Arai", 
        "givenName": "Kohei", 
        "type": "Person"
      }, 
      {
        "familyName": "Bhatia", 
        "givenName": "Rahul", 
        "type": "Person"
      }, 
      {
        "familyName": "Kapoor", 
        "givenName": "Supriya", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-02686-8_68", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-02685-1", 
        "978-3-030-02686-8"
      ], 
      "name": "Proceedings of the Future Technologies Conference (FTC) 2018", 
      "type": "Book"
    }, 
    "name": "Optimal Dimensionality Reduced Quantum Walk and Noise Characterization", 
    "pagination": "914-929", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-02686-8_68"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "02e686eb37750dcb031715adc8b474ab8cbd311d4fc5a0f8dd8410b7413c5817"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107688643"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-02686-8_68", 
      "https://app.dimensions.ai/details/publication/pub.1107688643"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T04:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000321_0000000321/records_74925_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-030-02686-8_68"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-02686-8_68'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-02686-8_68'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-02686-8_68'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-02686-8_68'


 

This table displays all metadata directly associated to this object as RDF triples.

111 TRIPLES      23 PREDICATES      37 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-02686-8_68 schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author N96b82f526a884859bee86d127198a6cf
4 schema:citation sg:pub.10.1007/s00220-009-0930-1
5 sg:pub.10.1038/srep13304
6 sg:pub.10.1038/srep20362
7 https://doi.org/10.1103/physreva.48.1687
8 https://doi.org/10.1103/physreva.58.915
9 https://doi.org/10.1103/physreva.70.022314
10 https://doi.org/10.1103/physreva.98.022316
11 https://doi.org/10.1109/focs.2007.18
12 https://doi.org/10.1137/050643684
13 https://doi.org/10.1137/s0097539705447311
14 https://doi.org/10.1145/780542.780552
15 schema:datePublished 2018-10-18
16 schema:datePublishedReg 2018-10-18
17 schema:description In a recent work by Novo et al. (Sci. Rep. , 13304, 2015), the invariant subspace method was applied to the study of continuous-time quantum walk (CTQW). In this work, we adopt the aforementioned method to investigate the optimality of a perturbed quantum walk search of a marked element in a noisy environment on various graphs. We formulate the necessary condition of the noise distribution in the system such that the invariant subspace method remains effective and efficient. Based on the noise, we further formulate how to set the appropriate coupling factor to preserve the optimality of the quantum walker. Thus, a quantum walker based on an N by N Hamiltonian can be efficiently implemented using the near-term quantum technology.
18 schema:editor N3eecec60408a4b73bb28261c1a120e0b
19 schema:genre chapter
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N4184e8006c2f4e09ba742cab0fd6cfb5
23 schema:name Optimal Dimensionality Reduced Quantum Walk and Noise Characterization
24 schema:pagination 914-929
25 schema:productId N41bf31e13a224bb488124c2d8871ae7f
26 N7b830c04b2f04a55b83e6768b34d0280
27 Nb1710f19f9214080bfda8d2405a2a43a
28 schema:publisher Nc6e45c5cc1474b1c9cdfcf86797c5bb0
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107688643
30 https://doi.org/10.1007/978-3-030-02686-8_68
31 schema:sdDatePublished 2019-04-16T04:39
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher Nc79d0c9839054d71ab175e57c6e4091a
34 schema:url https://link.springer.com/10.1007%2F978-3-030-02686-8_68
35 sgo:license sg:explorer/license/
36 sgo:sdDataset chapters
37 rdf:type schema:Chapter
38 N3eecec60408a4b73bb28261c1a120e0b rdf:first N56339ffe832443b6a3ccda19e1fb65df
39 rdf:rest N48d82d86707c4c0db53f4b20498e98f6
40 N4184e8006c2f4e09ba742cab0fd6cfb5 schema:isbn 978-3-030-02685-1
41 978-3-030-02686-8
42 schema:name Proceedings of the Future Technologies Conference (FTC) 2018
43 rdf:type schema:Book
44 N41bf31e13a224bb488124c2d8871ae7f schema:name readcube_id
45 schema:value 02e686eb37750dcb031715adc8b474ab8cbd311d4fc5a0f8dd8410b7413c5817
46 rdf:type schema:PropertyValue
47 N48d82d86707c4c0db53f4b20498e98f6 rdf:first N6ecab3d6abdb4b3db9970c117add1930
48 rdf:rest Nb617e0c972084ad58e828612c3a6422d
49 N56339ffe832443b6a3ccda19e1fb65df schema:familyName Arai
50 schema:givenName Kohei
51 rdf:type schema:Person
52 N6ecab3d6abdb4b3db9970c117add1930 schema:familyName Bhatia
53 schema:givenName Rahul
54 rdf:type schema:Person
55 N7b830c04b2f04a55b83e6768b34d0280 schema:name doi
56 schema:value 10.1007/978-3-030-02686-8_68
57 rdf:type schema:PropertyValue
58 N96b82f526a884859bee86d127198a6cf rdf:first sg:person.07770013413.87
59 rdf:rest rdf:nil
60 Nb1710f19f9214080bfda8d2405a2a43a schema:name dimensions_id
61 schema:value pub.1107688643
62 rdf:type schema:PropertyValue
63 Nb617e0c972084ad58e828612c3a6422d rdf:first Neaf701a08b224f1ca1d8154acef3a3de
64 rdf:rest rdf:nil
65 Nc6e45c5cc1474b1c9cdfcf86797c5bb0 schema:location Cham
66 schema:name Springer International Publishing
67 rdf:type schema:Organisation
68 Nc79d0c9839054d71ab175e57c6e4091a schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 Neaf701a08b224f1ca1d8154acef3a3de schema:familyName Kapoor
71 schema:givenName Supriya
72 rdf:type schema:Person
73 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
74 schema:name Physical Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
77 schema:name Quantum Physics
78 rdf:type schema:DefinedTerm
79 sg:person.07770013413.87 schema:affiliation https://www.grid.ac/institutes/grid.441535.2
80 schema:familyName Chiang
81 schema:givenName Chen-Fu
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07770013413.87
83 rdf:type schema:Person
84 sg:pub.10.1007/s00220-009-0930-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027723497
85 https://doi.org/10.1007/s00220-009-0930-1
86 rdf:type schema:CreativeWork
87 sg:pub.10.1038/srep13304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004751550
88 https://doi.org/10.1038/srep13304
89 rdf:type schema:CreativeWork
90 sg:pub.10.1038/srep20362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019766698
91 https://doi.org/10.1038/srep20362
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1103/physreva.48.1687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060487628
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1103/physreva.58.915 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021026363
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1103/physreva.70.022314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046853004
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1103/physreva.98.022316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106135643
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1109/focs.2007.18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093698999
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1137/050643684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062846669
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1137/s0097539705447311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062879612
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1145/780542.780552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006574725
108 rdf:type schema:CreativeWork
109 https://www.grid.ac/institutes/grid.441535.2 schema:alternateName SUNY Polytechnic Institute
110 schema:name State University of New York Polytechnic Institute, 13502, Utica, NY, USA
111 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...