Privacy-Preserving Whole-Genome Variant Queries View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-11-10

AUTHORS

Daniel Demmler , Kay Hamacher , Thomas Schneider , Sebastian Stammler

ABSTRACT

Medical research and treatments rely increasingly on genomic data. Queries on so-called variants are of high importance in, e.g., biomarker identification and general disease association studies. However, the human genome is a very sensitive piece of information that is worth protecting. By observing queries and responses to classical genomic databases, medical conditions can be inferred. The Beacon project is an example of a public genomic querying service, which undermines the privacy of the querier as well as individuals in the database. By secure outsourcing via secure multi-party computation (SMPC), we enable privacy-preserving genomic database queries that protect sensitive data contained in the queries and their respective responses. At the same time, we allow for multiple genomic databases to combine their datasets to achieve a much larger search space, without revealing the actual databases’ contents to third parties. SMPC is generic and allows to apply further processing like aggregation to query results. We measure the performance of our approach for realistic parameters and achieve convincingly fast runtimes that render our protocol applicable to real-world medical data integration settings. Our prototype implementation can process a private query with 5 genetic variant conditions against a person’s exome with 100,000 genomic variants in less than 180 ms online runtime, including additional range and equality checks for auxiliary data. More... »

PAGES

71-92

References to SciGraph publications

  • 2016. PPOPM: More Efficient Privacy Preserving Outsourced Pattern Matching in COMPUTER SECURITY – ESORICS 2016
  • 2016. Valiant’s Universal Circuit is Practical in ADVANCES IN CRYPTOLOGY – EUROCRYPT 2016
  • 2010. Practical Private Set Intersection Protocols with Linear Complexity in FINANCIAL CRYPTOGRAPHY AND DATA SECURITY
  • 2008. A Practical Universal Circuit Construction and Secure Evaluation of Private Functions in FINANCIAL CRYPTOGRAPHY AND DATA SECURITY
  • 2003. Extending Oblivious Transfers Efficiently in ADVANCES IN CRYPTOLOGY - CRYPTO 2003
  • 1999-04-15. Public-Key Cryptosystems Based on Composite Degree Residuosity Classes in ADVANCES IN CRYPTOLOGY — EUROCRYPT ’99
  • 2017-11-18. More Efficient Universal Circuit Constructions in ADVANCES IN CRYPTOLOGY – ASIACRYPT 2017
  • 2001-05-18. Efficient Multiparty Protocols Using Circuit Randomization in ADVANCES IN CRYPTOLOGY — CRYPTO ’91
  • 2016. Using Intel Software Guard Extensions for Efficient Two-Party Secure Function Evaluation in FINANCIAL CRYPTOGRAPHY AND DATA SECURITY
  • 2017-07. Efficient and secure outsourcing of genomic data storage in BMC MEDICAL GENOMICS
  • 2012. A New Approach to Practical Active-Secure Two-Party Computation in ADVANCES IN CRYPTOLOGY – CRYPTO 2012
  • Book

    TITLE

    Cryptology and Network Security

    ISBN

    978-3-030-02640-0
    978-3-030-02641-7

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-030-02641-7_4

    DOI

    http://dx.doi.org/10.1007/978-3-030-02641-7_4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1109840670


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Technical University of Darmstadt", 
              "id": "https://www.grid.ac/institutes/grid.6546.1", 
              "name": [
                "Technische Universit\u00e4t Darmstadt, Darmstadt, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Demmler", 
            "givenName": "Daniel", 
            "id": "sg:person.015574417675.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015574417675.87"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Technical University of Darmstadt", 
              "id": "https://www.grid.ac/institutes/grid.6546.1", 
              "name": [
                "Technische Universit\u00e4t Darmstadt, Darmstadt, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hamacher", 
            "givenName": "Kay", 
            "id": "sg:person.01172611525.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172611525.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Technical University of Darmstadt", 
              "id": "https://www.grid.ac/institutes/grid.6546.1", 
              "name": [
                "Technische Universit\u00e4t Darmstadt, Darmstadt, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schneider", 
            "givenName": "Thomas", 
            "id": "sg:person.010352561743.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010352561743.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Technical University of Darmstadt", 
              "id": "https://www.grid.ac/institutes/grid.6546.1", 
              "name": [
                "Technische Universit\u00e4t Darmstadt, Darmstadt, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Stammler", 
            "givenName": "Sebastian", 
            "id": "sg:person.016603540761.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016603540761.82"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/3-540-46766-1_34", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002631468", 
              "https://doi.org/10.1007/3-540-46766-1_34"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-46766-1_34", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002631468", 
              "https://doi.org/10.1007/3-540-46766-1_34"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-32009-5_40", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006976745", 
              "https://doi.org/10.1007/978-3-642-32009-5_40"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2015.09.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007400025"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2015.09.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007400025"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-85230-8_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013016745", 
              "https://doi.org/10.1007/978-3-540-85230-8_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2938503.2938507", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018135828"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btr330", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018404011"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-45146-4_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018913085", 
              "https://doi.org/10.1007/978-3-540-45146-4_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-45146-4_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018913085", 
              "https://doi.org/10.1007/978-3-540-45146-4_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/28395.28420", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019059647"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2665943.2665962", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020408787"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bts001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021512030"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2508859.2516738", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021713981"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp352", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023014918"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/800113.803649", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024083529"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.114819.110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025065244"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2517840.2517849", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026376564"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48910-x_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026773924", 
              "https://doi.org/10.1007/3-540-48910-x_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48910-x_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026773924", 
              "https://doi.org/10.1007/3-540-48910-x_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2046707.2046785", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029264459"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-45744-4_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033306318", 
              "https://doi.org/10.1007/978-3-319-45744-4_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-14577-3_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035637314", 
              "https://doi.org/10.1007/978-3-642-14577-3_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-14577-3_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035637314", 
              "https://doi.org/10.1007/978-3-642-14577-3_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2046660.2046682", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036932326"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-53357-4_20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040887340", 
              "https://doi.org/10.1007/978-3-662-53357-4_20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-49890-3_27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043563361", 
              "https://doi.org/10.1007/978-3-662-49890-3_27"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2810103.2813725", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046399940"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tit.1985.1057074", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061649188"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/sfcs.1986.25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086214875"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12920-017-0275-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090895767", 
              "https://doi.org/10.1186/s12920-017-0275-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12920-017-0275-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090895767", 
              "https://doi.org/10.1186/s12920-017-0275-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1515/popets-2017-0047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092266152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-70697-9_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092754918", 
              "https://doi.org/10.1007/978-3-319-70697-9_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-70697-9_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092754918", 
              "https://doi.org/10.1007/978-3-319-70697-9_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/sp.2008.34", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095215689"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/sp.2017.10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095568530"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.14722/ndss.2015.23113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095873085"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1515/popets-2018-0034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106470314"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-11-10", 
        "datePublishedReg": "2018-11-10", 
        "description": "Medical research and treatments rely increasingly on genomic data. Queries on so-called variants are of high importance in, e.g., biomarker identification and general disease association studies. However, the human genome is a very sensitive piece of information that is worth protecting. By observing queries and responses to classical genomic databases, medical conditions can be inferred. The Beacon project is an example of a public genomic querying service, which undermines the privacy of the querier as well as individuals in the database. By secure outsourcing via secure multi-party computation (SMPC), we enable privacy-preserving genomic database queries that protect sensitive data contained in the queries and their respective responses. At the same time, we allow for multiple genomic databases to combine their datasets to achieve a much larger search space, without revealing the actual databases\u2019 contents to third parties. SMPC is generic and allows to apply further processing like aggregation to query results. We measure the performance of our approach for realistic parameters and achieve convincingly fast runtimes that render our protocol applicable to real-world medical data integration settings. Our prototype implementation can process a private query with 5 genetic variant conditions against a person\u2019s exome with 100,000 genomic variants in less than 180 ms online runtime, including additional range and equality checks for auxiliary data.", 
        "editor": [
          {
            "familyName": "Capkun", 
            "givenName": "Srdjan", 
            "type": "Person"
          }, 
          {
            "familyName": "Chow", 
            "givenName": "Sherman S. M.", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-030-02641-7_4", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-030-02640-0", 
            "978-3-030-02641-7"
          ], 
          "name": "Cryptology and Network Security", 
          "type": "Book"
        }, 
        "name": "Privacy-Preserving Whole-Genome Variant Queries", 
        "pagination": "71-92", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-030-02641-7_4"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "1b17720dc930072c9628030818ea50d8996e6302aad12b43dcd2e0fd557d1a15"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1109840670"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-030-02641-7_4", 
          "https://app.dimensions.ai/details/publication/pub.1109840670"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T04:39", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000321_0000000321/records_74935_00000000.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-3-030-02641-7_4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-02641-7_4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-02641-7_4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-02641-7_4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-02641-7_4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    198 TRIPLES      23 PREDICATES      58 URIs      19 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-030-02641-7_4 schema:about anzsrc-for:08
    2 anzsrc-for:0806
    3 schema:author N3ec08202da434cb0a131be3e7a156a4c
    4 schema:citation sg:pub.10.1007/3-540-46766-1_34
    5 sg:pub.10.1007/3-540-48910-x_16
    6 sg:pub.10.1007/978-3-319-45744-4_7
    7 sg:pub.10.1007/978-3-319-70697-9_16
    8 sg:pub.10.1007/978-3-540-45146-4_9
    9 sg:pub.10.1007/978-3-540-85230-8_7
    10 sg:pub.10.1007/978-3-642-14577-3_13
    11 sg:pub.10.1007/978-3-642-32009-5_40
    12 sg:pub.10.1007/978-3-662-49890-3_27
    13 sg:pub.10.1007/978-3-662-53357-4_20
    14 sg:pub.10.1186/s12920-017-0275-0
    15 https://doi.org/10.1016/j.ajhg.2015.09.010
    16 https://doi.org/10.1093/bioinformatics/btp352
    17 https://doi.org/10.1093/bioinformatics/btr330
    18 https://doi.org/10.1093/bioinformatics/bts001
    19 https://doi.org/10.1101/gr.114819.110
    20 https://doi.org/10.1109/sfcs.1986.25
    21 https://doi.org/10.1109/sp.2008.34
    22 https://doi.org/10.1109/sp.2017.10
    23 https://doi.org/10.1109/tit.1985.1057074
    24 https://doi.org/10.1145/2046660.2046682
    25 https://doi.org/10.1145/2046707.2046785
    26 https://doi.org/10.1145/2508859.2516738
    27 https://doi.org/10.1145/2517840.2517849
    28 https://doi.org/10.1145/2665943.2665962
    29 https://doi.org/10.1145/2810103.2813725
    30 https://doi.org/10.1145/28395.28420
    31 https://doi.org/10.1145/2938503.2938507
    32 https://doi.org/10.1145/800113.803649
    33 https://doi.org/10.14722/ndss.2015.23113
    34 https://doi.org/10.1515/popets-2017-0047
    35 https://doi.org/10.1515/popets-2018-0034
    36 schema:datePublished 2018-11-10
    37 schema:datePublishedReg 2018-11-10
    38 schema:description Medical research and treatments rely increasingly on genomic data. Queries on so-called variants are of high importance in, e.g., biomarker identification and general disease association studies. However, the human genome is a very sensitive piece of information that is worth protecting. By observing queries and responses to classical genomic databases, medical conditions can be inferred. The Beacon project is an example of a public genomic querying service, which undermines the privacy of the querier as well as individuals in the database. By secure outsourcing via secure multi-party computation (SMPC), we enable privacy-preserving genomic database queries that protect sensitive data contained in the queries and their respective responses. At the same time, we allow for multiple genomic databases to combine their datasets to achieve a much larger search space, without revealing the actual databases’ contents to third parties. SMPC is generic and allows to apply further processing like aggregation to query results. We measure the performance of our approach for realistic parameters and achieve convincingly fast runtimes that render our protocol applicable to real-world medical data integration settings. Our prototype implementation can process a private query with 5 genetic variant conditions against a person’s exome with 100,000 genomic variants in less than 180 ms online runtime, including additional range and equality checks for auxiliary data.
    39 schema:editor N38d2d0e4e01141d3a47f375e613a2e24
    40 schema:genre chapter
    41 schema:inLanguage en
    42 schema:isAccessibleForFree false
    43 schema:isPartOf N294f85dd2aca4c4cbf6d1cbf8d3b68d2
    44 schema:name Privacy-Preserving Whole-Genome Variant Queries
    45 schema:pagination 71-92
    46 schema:productId N69cf26fc90844b5492ddf3d7dac738ac
    47 N6f01e6d6a6f94ad983cbd983c86b0534
    48 N8f4c52b287054b69bf5996408c569024
    49 schema:publisher N1d43d47d7d1a443caf96da7c49176fb0
    50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109840670
    51 https://doi.org/10.1007/978-3-030-02641-7_4
    52 schema:sdDatePublished 2019-04-16T04:39
    53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    54 schema:sdPublisher Nd225a172d12e4c24b1280624a27a42ad
    55 schema:url https://link.springer.com/10.1007%2F978-3-030-02641-7_4
    56 sgo:license sg:explorer/license/
    57 sgo:sdDataset chapters
    58 rdf:type schema:Chapter
    59 N1d43d47d7d1a443caf96da7c49176fb0 schema:location Cham
    60 schema:name Springer International Publishing
    61 rdf:type schema:Organisation
    62 N21697aaca41f459f818575ad3d63eea5 schema:familyName Chow
    63 schema:givenName Sherman S. M.
    64 rdf:type schema:Person
    65 N26402445a3404d58b16255ea956feade rdf:first sg:person.016603540761.82
    66 rdf:rest rdf:nil
    67 N294f85dd2aca4c4cbf6d1cbf8d3b68d2 schema:isbn 978-3-030-02640-0
    68 978-3-030-02641-7
    69 schema:name Cryptology and Network Security
    70 rdf:type schema:Book
    71 N38d2d0e4e01141d3a47f375e613a2e24 rdf:first Naa53daee6dfe47e9bb8853665960ecea
    72 rdf:rest N877582467e014d9585971ca9bf08b9c1
    73 N3ec08202da434cb0a131be3e7a156a4c rdf:first sg:person.015574417675.87
    74 rdf:rest Nd463214a8d204651a4eeddf3b3b17fd1
    75 N69cf26fc90844b5492ddf3d7dac738ac schema:name readcube_id
    76 schema:value 1b17720dc930072c9628030818ea50d8996e6302aad12b43dcd2e0fd557d1a15
    77 rdf:type schema:PropertyValue
    78 N6f01e6d6a6f94ad983cbd983c86b0534 schema:name dimensions_id
    79 schema:value pub.1109840670
    80 rdf:type schema:PropertyValue
    81 N877582467e014d9585971ca9bf08b9c1 rdf:first N21697aaca41f459f818575ad3d63eea5
    82 rdf:rest rdf:nil
    83 N8f4c52b287054b69bf5996408c569024 schema:name doi
    84 schema:value 10.1007/978-3-030-02641-7_4
    85 rdf:type schema:PropertyValue
    86 Naa53daee6dfe47e9bb8853665960ecea schema:familyName Capkun
    87 schema:givenName Srdjan
    88 rdf:type schema:Person
    89 Nd225a172d12e4c24b1280624a27a42ad schema:name Springer Nature - SN SciGraph project
    90 rdf:type schema:Organization
    91 Nd463214a8d204651a4eeddf3b3b17fd1 rdf:first sg:person.01172611525.29
    92 rdf:rest Nfe739652276a4902bf21f8997958e5bf
    93 Nfe739652276a4902bf21f8997958e5bf rdf:first sg:person.010352561743.30
    94 rdf:rest N26402445a3404d58b16255ea956feade
    95 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    96 schema:name Information and Computing Sciences
    97 rdf:type schema:DefinedTerm
    98 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
    99 schema:name Information Systems
    100 rdf:type schema:DefinedTerm
    101 sg:person.010352561743.30 schema:affiliation https://www.grid.ac/institutes/grid.6546.1
    102 schema:familyName Schneider
    103 schema:givenName Thomas
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010352561743.30
    105 rdf:type schema:Person
    106 sg:person.01172611525.29 schema:affiliation https://www.grid.ac/institutes/grid.6546.1
    107 schema:familyName Hamacher
    108 schema:givenName Kay
    109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172611525.29
    110 rdf:type schema:Person
    111 sg:person.015574417675.87 schema:affiliation https://www.grid.ac/institutes/grid.6546.1
    112 schema:familyName Demmler
    113 schema:givenName Daniel
    114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015574417675.87
    115 rdf:type schema:Person
    116 sg:person.016603540761.82 schema:affiliation https://www.grid.ac/institutes/grid.6546.1
    117 schema:familyName Stammler
    118 schema:givenName Sebastian
    119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016603540761.82
    120 rdf:type schema:Person
    121 sg:pub.10.1007/3-540-46766-1_34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002631468
    122 https://doi.org/10.1007/3-540-46766-1_34
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/3-540-48910-x_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026773924
    125 https://doi.org/10.1007/3-540-48910-x_16
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/978-3-319-45744-4_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033306318
    128 https://doi.org/10.1007/978-3-319-45744-4_7
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1007/978-3-319-70697-9_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092754918
    131 https://doi.org/10.1007/978-3-319-70697-9_16
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/978-3-540-45146-4_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018913085
    134 https://doi.org/10.1007/978-3-540-45146-4_9
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/978-3-540-85230-8_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013016745
    137 https://doi.org/10.1007/978-3-540-85230-8_7
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/978-3-642-14577-3_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035637314
    140 https://doi.org/10.1007/978-3-642-14577-3_13
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/978-3-642-32009-5_40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006976745
    143 https://doi.org/10.1007/978-3-642-32009-5_40
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/978-3-662-49890-3_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043563361
    146 https://doi.org/10.1007/978-3-662-49890-3_27
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/978-3-662-53357-4_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040887340
    149 https://doi.org/10.1007/978-3-662-53357-4_20
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1186/s12920-017-0275-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090895767
    152 https://doi.org/10.1186/s12920-017-0275-0
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1016/j.ajhg.2015.09.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007400025
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1093/bioinformatics/btp352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023014918
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1093/bioinformatics/btr330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018404011
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1093/bioinformatics/bts001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021512030
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1101/gr.114819.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025065244
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1109/sfcs.1986.25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086214875
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1109/sp.2008.34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095215689
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1109/sp.2017.10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095568530
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1109/tit.1985.1057074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061649188
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1145/2046660.2046682 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036932326
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1145/2046707.2046785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029264459
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1145/2508859.2516738 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021713981
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1145/2517840.2517849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026376564
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1145/2665943.2665962 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020408787
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1145/2810103.2813725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046399940
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1145/28395.28420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019059647
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1145/2938503.2938507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018135828
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1145/800113.803649 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024083529
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.14722/ndss.2015.23113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095873085
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1515/popets-2017-0047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092266152
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1515/popets-2018-0034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106470314
    195 rdf:type schema:CreativeWork
    196 https://www.grid.ac/institutes/grid.6546.1 schema:alternateName Technical University of Darmstadt
    197 schema:name Technische Universität Darmstadt, Darmstadt, Germany
    198 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...