Training Set Camouflage View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-09-26

AUTHORS

Ayon Sen , Scott Alfeld , Xuezhou Zhang , Ara Vartanian , Yuzhe Ma , Xiaojin Zhu

ABSTRACT

We introduce a form of steganography in the domain of machine learning which we call training set camouflage. Imagine Alice has a training set on an illicit machine learning classification task. Alice wants Bob (a machine learning system) to learn the task. However, sending either the training set or the trained model to Bob can raise suspicion if the communication is monitored. Training set camouflage allows Alice to compute a second training set on a completely different – and seemingly benign – classification task. By construction, sending the second training set will not raise suspicion. When Bob applies his standard (public) learning algorithm to the second training set, he approximately recovers the classifier on the original task. Training set camouflage is a novel form of steganography in machine learning. We formulate training set camouflage as a combinatorial bilevel optimization problem and propose solvers based on nonlinear programming and local search. Experiments on real classification tasks demonstrate the feasibility of such camouflage. More... »

PAGES

59-79

References to SciGraph publications

Book

TITLE

Decision and Game Theory for Security

ISBN

978-3-030-01553-4
978-3-030-01554-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-01554-1_4

DOI

http://dx.doi.org/10.1007/978-3-030-01554-1_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107244608


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Wisconsin\u2013Madison", 
          "id": "https://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "University of Wisconsin-Madison, Madison, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sen", 
        "givenName": "Ayon", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Amherst College", 
          "id": "https://www.grid.ac/institutes/grid.252152.3", 
          "name": [
            "Amherst College, Amherst, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alfeld", 
        "givenName": "Scott", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Wisconsin\u2013Madison", 
          "id": "https://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "University of Wisconsin-Madison, Madison, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Xuezhou", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Wisconsin\u2013Madison", 
          "id": "https://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "University of Wisconsin-Madison, Madison, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vartanian", 
        "givenName": "Ara", 
        "id": "sg:person.015345461704.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015345461704.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Wisconsin\u2013Madison", 
          "id": "https://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "University of Wisconsin-Madison, Madison, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ma", 
        "givenName": "Yuzhe", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Wisconsin\u2013Madison", 
          "id": "https://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "University of Wisconsin-Madison, Madison, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Xiaojin", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/11551492_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006392242", 
          "https://doi.org/10.1007/11551492_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11551492_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006392242", 
          "https://doi.org/10.1007/11551492_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11551492_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006392242", 
          "https://doi.org/10.1007/11551492_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-40041-4_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006864000", 
          "https://doi.org/10.1007/978-3-642-40041-4_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45708-9_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007009493", 
          "https://doi.org/10.1007/3-540-45708-9_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45708-9_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007009493", 
          "https://doi.org/10.1007/3-540-45708-9_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1014052.1014066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011166257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2020408.2020495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014118184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-55220-5_17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014861376", 
          "https://doi.org/10.1007/978-3-642-55220-5_17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2840728.2840730", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016479977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-4730-9_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023259612", 
          "https://doi.org/10.1007/978-1-4684-4730-9_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-32009-5_50", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025522627", 
          "https://doi.org/10.1007/978-3-642-32009-5_50"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-49380-8_21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029536572", 
          "https://doi.org/10.1007/3-540-49380-8_21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-49380-8_21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029536572", 
          "https://doi.org/10.1007/3-540-49380-8_21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-30114-1_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031670699", 
          "https://doi.org/10.1007/978-3-540-30114-1_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-30114-1_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031670699", 
          "https://doi.org/10.1007/978-3-540-30114-1_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1654988.1654990", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033395433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1081870.1081950", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033696899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.465273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035332093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2633600", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038846128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-13013-7_25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039389499", 
          "https://doi.org/10.1007/978-3-642-13013-7_25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10994-010-5188-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039784713", 
          "https://doi.org/10.1007/s10994-010-5188-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10994-010-5188-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039784713", 
          "https://doi.org/10.1007/s10994-010-5188-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10994-010-5188-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039784713", 
          "https://doi.org/10.1007/s10994-010-5188-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2005.09.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043010731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11776420_19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043744650", 
          "https://doi.org/10.1007/11776420_19"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1128817.1128824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047610789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-36084-0_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047893423", 
          "https://doi.org/10.1007/3-540-36084-0_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2213977.2214086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048231227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00401706.1970.10488634", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058284123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5254.708428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061186227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lsp.2005.847889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061376550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mc.1998.4655281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061386432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnnls.2016.2593488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061719241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2016.90", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093359587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icdmw.2009.9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094751057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ias.2009.89", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095163829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2018.07.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105734019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1106875674", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9781118548387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106875674"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-09-26", 
    "datePublishedReg": "2018-09-26", 
    "description": "We introduce a form of steganography in the domain of machine learning which we call training set camouflage. Imagine Alice has a training set on an illicit machine learning classification task. Alice wants Bob (a machine learning system) to learn the task. However, sending either the training set or the trained model to Bob can raise suspicion if the communication is monitored. Training set camouflage allows Alice to compute a second training set on a completely different \u2013 and seemingly benign \u2013 classification task. By construction, sending the second training set will not raise suspicion. When Bob applies his standard (public) learning algorithm to the second training set, he approximately recovers the classifier on the original task. Training set camouflage is a novel form of steganography in machine learning. We formulate training set camouflage as a combinatorial bilevel optimization problem and propose solvers based on nonlinear programming and local search. Experiments on real classification tasks demonstrate the feasibility of such camouflage.", 
    "editor": [
      {
        "familyName": "Bushnell", 
        "givenName": "Linda", 
        "type": "Person"
      }, 
      {
        "familyName": "Poovendran", 
        "givenName": "Radha", 
        "type": "Person"
      }, 
      {
        "familyName": "Ba\u015far", 
        "givenName": "Tamer", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-01554-1_4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5019557", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5544167", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4314154", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6935332", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": {
      "isbn": [
        "978-3-030-01553-4", 
        "978-3-030-01554-1"
      ], 
      "name": "Decision and Game Theory for Security", 
      "type": "Book"
    }, 
    "name": "Training Set Camouflage", 
    "pagination": "59-79", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-01554-1_4"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9bcc7e83933d18b04921ae40148e1f22ca753cea89cc188e08abf2047c432ed0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107244608"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-01554-1_4", 
      "https://app.dimensions.ai/details/publication/pub.1107244608"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T04:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000321_0000000321/records_74910_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-030-01554-1_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-01554-1_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-01554-1_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-01554-1_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-01554-1_4'


 

This table displays all metadata directly associated to this object as RDF triples.

226 TRIPLES      23 PREDICATES      59 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-01554-1_4 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N4542ae4ad5474fe79ddf5df1905a9b77
4 schema:citation sg:pub.10.1007/11551492_2
5 sg:pub.10.1007/11776420_19
6 sg:pub.10.1007/3-540-36084-0_4
7 sg:pub.10.1007/3-540-45708-9_6
8 sg:pub.10.1007/3-540-49380-8_21
9 sg:pub.10.1007/978-1-4684-4730-9_5
10 sg:pub.10.1007/978-3-540-30114-1_6
11 sg:pub.10.1007/978-3-642-13013-7_25
12 sg:pub.10.1007/978-3-642-32009-5_50
13 sg:pub.10.1007/978-3-642-40041-4_5
14 sg:pub.10.1007/978-3-642-55220-5_17
15 sg:pub.10.1007/s10994-010-5188-5
16 https://app.dimensions.ai/details/publication/pub.1106875674
17 https://doi.org/10.1002/9781118548387
18 https://doi.org/10.1016/j.ejor.2005.09.007
19 https://doi.org/10.1016/j.patcog.2018.07.023
20 https://doi.org/10.1080/00401706.1970.10488634
21 https://doi.org/10.1109/5254.708428
22 https://doi.org/10.1109/cvpr.2016.90
23 https://doi.org/10.1109/ias.2009.89
24 https://doi.org/10.1109/icdmw.2009.9
25 https://doi.org/10.1109/lsp.2005.847889
26 https://doi.org/10.1109/mc.1998.4655281
27 https://doi.org/10.1109/tnnls.2016.2593488
28 https://doi.org/10.1117/12.465273
29 https://doi.org/10.1145/1014052.1014066
30 https://doi.org/10.1145/1081870.1081950
31 https://doi.org/10.1145/1128817.1128824
32 https://doi.org/10.1145/1654988.1654990
33 https://doi.org/10.1145/2020408.2020495
34 https://doi.org/10.1145/2213977.2214086
35 https://doi.org/10.1145/2633600
36 https://doi.org/10.1145/2840728.2840730
37 schema:datePublished 2018-09-26
38 schema:datePublishedReg 2018-09-26
39 schema:description We introduce a form of steganography in the domain of machine learning which we call training set camouflage. Imagine Alice has a training set on an illicit machine learning classification task. Alice wants Bob (a machine learning system) to learn the task. However, sending either the training set or the trained model to Bob can raise suspicion if the communication is monitored. Training set camouflage allows Alice to compute a second training set on a completely different – and seemingly benign – classification task. By construction, sending the second training set will not raise suspicion. When Bob applies his standard (public) learning algorithm to the second training set, he approximately recovers the classifier on the original task. Training set camouflage is a novel form of steganography in machine learning. We formulate training set camouflage as a combinatorial bilevel optimization problem and propose solvers based on nonlinear programming and local search. Experiments on real classification tasks demonstrate the feasibility of such camouflage.
40 schema:editor Nfe4e9a994a72407ca34de06b7ab810f9
41 schema:genre chapter
42 schema:inLanguage en
43 schema:isAccessibleForFree false
44 schema:isPartOf N8e5824dc454d4f35905471cd6efec98f
45 schema:name Training Set Camouflage
46 schema:pagination 59-79
47 schema:productId N7079b96f05064bd8b2279fd77c08b02b
48 Naf0fe3de1e184b66befdfe365029bf96
49 Nf2190b0710344a0d86583806d138fbe8
50 schema:publisher N38a04dc75e814aca8b990a9882dbbdc1
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107244608
52 https://doi.org/10.1007/978-3-030-01554-1_4
53 schema:sdDatePublished 2019-04-16T04:39
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher Ne9d12242afc943b780e62db2a44b4281
56 schema:url https://link.springer.com/10.1007%2F978-3-030-01554-1_4
57 sgo:license sg:explorer/license/
58 sgo:sdDataset chapters
59 rdf:type schema:Chapter
60 N058b1253e93a4dbe8959fa44edecdc9b schema:familyName Poovendran
61 schema:givenName Radha
62 rdf:type schema:Person
63 N09875bcf9ef74ab2893b9ba71bfe3cc9 rdf:first N79ee94498a294ff6ae89459f920feaed
64 rdf:rest rdf:nil
65 N269e970680034dd6a43f3fbc288f1550 schema:affiliation https://www.grid.ac/institutes/grid.14003.36
66 schema:familyName Ma
67 schema:givenName Yuzhe
68 rdf:type schema:Person
69 N38a04dc75e814aca8b990a9882dbbdc1 schema:location Cham
70 schema:name Springer International Publishing
71 rdf:type schema:Organisation
72 N399981655f1141e7af602cdf640be051 schema:familyName Bushnell
73 schema:givenName Linda
74 rdf:type schema:Person
75 N39e40004e7e84ebb807dbc66e35d9152 rdf:first N269e970680034dd6a43f3fbc288f1550
76 rdf:rest N09875bcf9ef74ab2893b9ba71bfe3cc9
77 N442b5fd6ba224a6fa79a609f30fbad86 rdf:first Nf613a751f3094be88d569296c2c7329f
78 rdf:rest rdf:nil
79 N4542ae4ad5474fe79ddf5df1905a9b77 rdf:first Nc734cebba3b44d2a98c711f3ca42ece1
80 rdf:rest N65afc03acbf34c0e830cb187e1f0d5ba
81 N4b67351b451b4380a4e4d14032dbe045 schema:affiliation https://www.grid.ac/institutes/grid.252152.3
82 schema:familyName Alfeld
83 schema:givenName Scott
84 rdf:type schema:Person
85 N5ae85b68903a4f9aac2c3b6e8667c97d rdf:first N058b1253e93a4dbe8959fa44edecdc9b
86 rdf:rest N442b5fd6ba224a6fa79a609f30fbad86
87 N65ac097ae399444dbaa7adf84c5071f0 schema:affiliation https://www.grid.ac/institutes/grid.14003.36
88 schema:familyName Zhang
89 schema:givenName Xuezhou
90 rdf:type schema:Person
91 N65afc03acbf34c0e830cb187e1f0d5ba rdf:first N4b67351b451b4380a4e4d14032dbe045
92 rdf:rest Nc8865dfa2e7c4258a4610fc915055d1c
93 N7079b96f05064bd8b2279fd77c08b02b schema:name dimensions_id
94 schema:value pub.1107244608
95 rdf:type schema:PropertyValue
96 N79ee94498a294ff6ae89459f920feaed schema:affiliation https://www.grid.ac/institutes/grid.14003.36
97 schema:familyName Zhu
98 schema:givenName Xiaojin
99 rdf:type schema:Person
100 N8e5824dc454d4f35905471cd6efec98f schema:isbn 978-3-030-01553-4
101 978-3-030-01554-1
102 schema:name Decision and Game Theory for Security
103 rdf:type schema:Book
104 Naf0fe3de1e184b66befdfe365029bf96 schema:name doi
105 schema:value 10.1007/978-3-030-01554-1_4
106 rdf:type schema:PropertyValue
107 Nc734cebba3b44d2a98c711f3ca42ece1 schema:affiliation https://www.grid.ac/institutes/grid.14003.36
108 schema:familyName Sen
109 schema:givenName Ayon
110 rdf:type schema:Person
111 Nc8865dfa2e7c4258a4610fc915055d1c rdf:first N65ac097ae399444dbaa7adf84c5071f0
112 rdf:rest Nefab1658882e4fb0816efaa183a2b055
113 Ne9d12242afc943b780e62db2a44b4281 schema:name Springer Nature - SN SciGraph project
114 rdf:type schema:Organization
115 Nefab1658882e4fb0816efaa183a2b055 rdf:first sg:person.015345461704.43
116 rdf:rest N39e40004e7e84ebb807dbc66e35d9152
117 Nf2190b0710344a0d86583806d138fbe8 schema:name readcube_id
118 schema:value 9bcc7e83933d18b04921ae40148e1f22ca753cea89cc188e08abf2047c432ed0
119 rdf:type schema:PropertyValue
120 Nf613a751f3094be88d569296c2c7329f schema:familyName Başar
121 schema:givenName Tamer
122 rdf:type schema:Person
123 Nfe4e9a994a72407ca34de06b7ab810f9 rdf:first N399981655f1141e7af602cdf640be051
124 rdf:rest N5ae85b68903a4f9aac2c3b6e8667c97d
125 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
126 schema:name Information and Computing Sciences
127 rdf:type schema:DefinedTerm
128 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
129 schema:name Artificial Intelligence and Image Processing
130 rdf:type schema:DefinedTerm
131 sg:grant.4314154 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-030-01554-1_4
132 rdf:type schema:MonetaryGrant
133 sg:grant.5019557 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-030-01554-1_4
134 rdf:type schema:MonetaryGrant
135 sg:grant.5544167 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-030-01554-1_4
136 rdf:type schema:MonetaryGrant
137 sg:grant.6935332 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-030-01554-1_4
138 rdf:type schema:MonetaryGrant
139 sg:person.015345461704.43 schema:affiliation https://www.grid.ac/institutes/grid.14003.36
140 schema:familyName Vartanian
141 schema:givenName Ara
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015345461704.43
143 rdf:type schema:Person
144 sg:pub.10.1007/11551492_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006392242
145 https://doi.org/10.1007/11551492_2
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/11776420_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043744650
148 https://doi.org/10.1007/11776420_19
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/3-540-36084-0_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047893423
151 https://doi.org/10.1007/3-540-36084-0_4
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/3-540-45708-9_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007009493
154 https://doi.org/10.1007/3-540-45708-9_6
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/3-540-49380-8_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029536572
157 https://doi.org/10.1007/3-540-49380-8_21
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/978-1-4684-4730-9_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023259612
160 https://doi.org/10.1007/978-1-4684-4730-9_5
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/978-3-540-30114-1_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031670699
163 https://doi.org/10.1007/978-3-540-30114-1_6
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/978-3-642-13013-7_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039389499
166 https://doi.org/10.1007/978-3-642-13013-7_25
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/978-3-642-32009-5_50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025522627
169 https://doi.org/10.1007/978-3-642-32009-5_50
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/978-3-642-40041-4_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006864000
172 https://doi.org/10.1007/978-3-642-40041-4_5
173 rdf:type schema:CreativeWork
174 sg:pub.10.1007/978-3-642-55220-5_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014861376
175 https://doi.org/10.1007/978-3-642-55220-5_17
176 rdf:type schema:CreativeWork
177 sg:pub.10.1007/s10994-010-5188-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039784713
178 https://doi.org/10.1007/s10994-010-5188-5
179 rdf:type schema:CreativeWork
180 https://app.dimensions.ai/details/publication/pub.1106875674 schema:CreativeWork
181 https://doi.org/10.1002/9781118548387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106875674
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.ejor.2005.09.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043010731
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.patcog.2018.07.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105734019
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1080/00401706.1970.10488634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058284123
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1109/5254.708428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061186227
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1109/cvpr.2016.90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093359587
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1109/ias.2009.89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095163829
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1109/icdmw.2009.9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094751057
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1109/lsp.2005.847889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061376550
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1109/mc.1998.4655281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061386432
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1109/tnnls.2016.2593488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061719241
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1117/12.465273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035332093
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1145/1014052.1014066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011166257
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1145/1081870.1081950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033696899
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1145/1128817.1128824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047610789
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1145/1654988.1654990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033395433
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1145/2020408.2020495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014118184
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1145/2213977.2214086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048231227
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1145/2633600 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038846128
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1145/2840728.2840730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016479977
220 rdf:type schema:CreativeWork
221 https://www.grid.ac/institutes/grid.14003.36 schema:alternateName University of Wisconsin–Madison
222 schema:name University of Wisconsin-Madison, Madison, USA
223 rdf:type schema:Organization
224 https://www.grid.ac/institutes/grid.252152.3 schema:alternateName Amherst College
225 schema:name Amherst College, Amherst, USA
226 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...