Approximating Power Indices to Assess Cybersecurity Criticality View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-09-26

AUTHORS

Daniel Clouse , David Burke

ABSTRACT

This paper describes our work in developing approximation algorithms to calculate the Banzhaf Power Index (BPI) in a bicooperative game (that is, games with two coalitions) with large n for the number of players. Our motivation for this work is applying a cooperative game-theoretic framework to cybersecurity scenarios: our past experience with network defense made us receptive to the principle that differences in the criticality of players or network resources in a coalition setting is not always proportional to their differences in weighting or numbers of votes. Hence, calculating a game-theoretic power measure makes sense as a basis for both assessments and allocation decisions. The challenge is that for most real-world scenarios, the value of n is too high for an exact algorithm to solve in time to be actionable in a network defense scenario. We describe our approximation algorithm, and show empirical results that demonstrate that it produces solid estimates of the BPIs that would result from an exact calculation. Therefore, this approximation approach has utility in scenarios where it is imperative to deliver timely results and network membership can be dynamic. More... »

PAGES

346-365

References to SciGraph publications

Book

TITLE

Decision and Game Theory for Security

ISBN

978-3-030-01553-4
978-3-030-01554-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-01554-1_20

DOI

http://dx.doi.org/10.1007/978-3-030-01554-1_20

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107244590


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Defense Information Systems Agency", 
          "id": "https://www.grid.ac/institutes/grid.466606.4", 
          "name": [
            "Department of Defense, Fort Meade, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Clouse", 
        "givenName": "Daniel", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Galois (United States)", 
          "id": "https://www.grid.ac/institutes/grid.455552.6", 
          "name": [
            "Galois, Inc., Portland, OR, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Burke", 
        "givenName": "David", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.dam.2010.02.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017130386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.artint.2008.05.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021541203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cose.2013.03.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034993473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/mnsc.18.5.64", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064717003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/acc.2011.5991463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094501289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icimp.2010.14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094652701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109705173", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-8130-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705173", 
          "https://doi.org/10.1007/978-1-4613-8130-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-8130-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705173", 
          "https://doi.org/10.1007/978-1-4613-8130-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-09-26", 
    "datePublishedReg": "2018-09-26", 
    "description": "This paper describes our work in developing approximation algorithms to calculate the Banzhaf Power Index (BPI) in a bicooperative game (that is, games with two coalitions) with large n for the number of players. Our motivation for this work is applying a cooperative game-theoretic framework to cybersecurity scenarios: our past experience with network defense made us receptive to the principle that differences in the criticality of players or network resources in a coalition setting is not always proportional to their differences in weighting or numbers of votes. Hence, calculating a game-theoretic power measure makes sense as a basis for both assessments and allocation decisions. The challenge is that for most real-world scenarios, the value of n is too high for an exact algorithm to solve in time to be actionable in a network defense scenario. We describe our approximation algorithm, and show empirical results that demonstrate that it produces solid estimates of the BPIs that would result from an exact calculation. Therefore, this approximation approach has utility in scenarios where it is imperative to deliver timely results and network membership can be dynamic.", 
    "editor": [
      {
        "familyName": "Bushnell", 
        "givenName": "Linda", 
        "type": "Person"
      }, 
      {
        "familyName": "Poovendran", 
        "givenName": "Radha", 
        "type": "Person"
      }, 
      {
        "familyName": "Ba\u015far", 
        "givenName": "Tamer", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-01554-1_20", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-01553-4", 
        "978-3-030-01554-1"
      ], 
      "name": "Decision and Game Theory for Security", 
      "type": "Book"
    }, 
    "name": "Approximating Power Indices to Assess Cybersecurity Criticality", 
    "pagination": "346-365", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-01554-1_20"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8a2ea6e06ce2fecca35946308197a94b43e3f4bac6344800fca798d41d0e2e16"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107244590"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-01554-1_20", 
      "https://app.dimensions.ai/details/publication/pub.1107244590"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T04:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000321_0000000321/records_74908_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-030-01554-1_20"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-01554-1_20'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-01554-1_20'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-01554-1_20'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-01554-1_20'


 

This table displays all metadata directly associated to this object as RDF triples.

107 TRIPLES      23 PREDICATES      34 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-01554-1_20 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author Nd54c291413e5491b9f57924f06e2c08c
4 schema:citation sg:pub.10.1007/978-1-4613-8130-3
5 https://app.dimensions.ai/details/publication/pub.1109705173
6 https://doi.org/10.1016/j.artint.2008.05.003
7 https://doi.org/10.1016/j.cose.2013.03.014
8 https://doi.org/10.1016/j.dam.2010.02.007
9 https://doi.org/10.1109/acc.2011.5991463
10 https://doi.org/10.1109/icimp.2010.14
11 https://doi.org/10.1287/mnsc.18.5.64
12 schema:datePublished 2018-09-26
13 schema:datePublishedReg 2018-09-26
14 schema:description This paper describes our work in developing approximation algorithms to calculate the Banzhaf Power Index (BPI) in a bicooperative game (that is, games with two coalitions) with large n for the number of players. Our motivation for this work is applying a cooperative game-theoretic framework to cybersecurity scenarios: our past experience with network defense made us receptive to the principle that differences in the criticality of players or network resources in a coalition setting is not always proportional to their differences in weighting or numbers of votes. Hence, calculating a game-theoretic power measure makes sense as a basis for both assessments and allocation decisions. The challenge is that for most real-world scenarios, the value of n is too high for an exact algorithm to solve in time to be actionable in a network defense scenario. We describe our approximation algorithm, and show empirical results that demonstrate that it produces solid estimates of the BPIs that would result from an exact calculation. Therefore, this approximation approach has utility in scenarios where it is imperative to deliver timely results and network membership can be dynamic.
15 schema:editor N963cf60224384ee69ce020c75b5f5141
16 schema:genre chapter
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf Ncbf28626094a463ba212d8f69fe99d2d
20 schema:name Approximating Power Indices to Assess Cybersecurity Criticality
21 schema:pagination 346-365
22 schema:productId N0d7b90e7bdba4cd78d36a4076d313a9c
23 N71ddbec11d4843dcaa605e72829995b3
24 Nce04e12d2d084070bb8fa9d00a165f81
25 schema:publisher N89b17b68a86342538525fcba10d12b1a
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107244590
27 https://doi.org/10.1007/978-3-030-01554-1_20
28 schema:sdDatePublished 2019-04-16T04:39
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher Nb2e6bdb4261b4c118caa1b862f18980b
31 schema:url https://link.springer.com/10.1007%2F978-3-030-01554-1_20
32 sgo:license sg:explorer/license/
33 sgo:sdDataset chapters
34 rdf:type schema:Chapter
35 N0d7b90e7bdba4cd78d36a4076d313a9c schema:name readcube_id
36 schema:value 8a2ea6e06ce2fecca35946308197a94b43e3f4bac6344800fca798d41d0e2e16
37 rdf:type schema:PropertyValue
38 N2db9471d1e19434d9ad971f98c070980 rdf:first N2ef5bb7c0a7346a392588a09cfef2968
39 rdf:rest rdf:nil
40 N2ef5bb7c0a7346a392588a09cfef2968 schema:familyName Başar
41 schema:givenName Tamer
42 rdf:type schema:Person
43 N71ddbec11d4843dcaa605e72829995b3 schema:name doi
44 schema:value 10.1007/978-3-030-01554-1_20
45 rdf:type schema:PropertyValue
46 N89b17b68a86342538525fcba10d12b1a schema:location Cham
47 schema:name Springer International Publishing
48 rdf:type schema:Organisation
49 N963cf60224384ee69ce020c75b5f5141 rdf:first Nec21693eb2204da3aec3c841ff228dfe
50 rdf:rest Nf2e65d33ef47483ba4db1ff1ed5f29a1
51 N971d92bfc47b484f83377b3b4308aec9 schema:familyName Poovendran
52 schema:givenName Radha
53 rdf:type schema:Person
54 Nb2e6bdb4261b4c118caa1b862f18980b schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 Ncbf28626094a463ba212d8f69fe99d2d schema:isbn 978-3-030-01553-4
57 978-3-030-01554-1
58 schema:name Decision and Game Theory for Security
59 rdf:type schema:Book
60 Ncd30e6621fec42b9a32e6b7698aaeb0b schema:affiliation https://www.grid.ac/institutes/grid.455552.6
61 schema:familyName Burke
62 schema:givenName David
63 rdf:type schema:Person
64 Nce04e12d2d084070bb8fa9d00a165f81 schema:name dimensions_id
65 schema:value pub.1107244590
66 rdf:type schema:PropertyValue
67 Nd40eae744bd040bc89973b932960841e schema:affiliation https://www.grid.ac/institutes/grid.466606.4
68 schema:familyName Clouse
69 schema:givenName Daniel
70 rdf:type schema:Person
71 Nd54c291413e5491b9f57924f06e2c08c rdf:first Nd40eae744bd040bc89973b932960841e
72 rdf:rest Nfc4f86553dc4439dad68c8ea7ae38c68
73 Nec21693eb2204da3aec3c841ff228dfe schema:familyName Bushnell
74 schema:givenName Linda
75 rdf:type schema:Person
76 Nf2e65d33ef47483ba4db1ff1ed5f29a1 rdf:first N971d92bfc47b484f83377b3b4308aec9
77 rdf:rest N2db9471d1e19434d9ad971f98c070980
78 Nfc4f86553dc4439dad68c8ea7ae38c68 rdf:first Ncd30e6621fec42b9a32e6b7698aaeb0b
79 rdf:rest rdf:nil
80 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
81 schema:name Information and Computing Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
84 schema:name Computation Theory and Mathematics
85 rdf:type schema:DefinedTerm
86 sg:pub.10.1007/978-1-4613-8130-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705173
87 https://doi.org/10.1007/978-1-4613-8130-3
88 rdf:type schema:CreativeWork
89 https://app.dimensions.ai/details/publication/pub.1109705173 schema:CreativeWork
90 https://doi.org/10.1016/j.artint.2008.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021541203
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/j.cose.2013.03.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034993473
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/j.dam.2010.02.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017130386
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1109/acc.2011.5991463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094501289
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1109/icimp.2010.14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094652701
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1287/mnsc.18.5.64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064717003
101 rdf:type schema:CreativeWork
102 https://www.grid.ac/institutes/grid.455552.6 schema:alternateName Galois (United States)
103 schema:name Galois, Inc., Portland, OR, USA
104 rdf:type schema:Organization
105 https://www.grid.ac/institutes/grid.466606.4 schema:alternateName Defense Information Systems Agency
106 schema:name Department of Defense, Fort Meade, MD, USA
107 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...