A Temporal Estimate of Integrated Information for Intracranial Functional Connectivity View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-09-26

AUTHORS

Xerxes D. Arsiwalla , Daniel Pacheco , Alessandro Principe , Rodrigo Rocamora , Paul Verschure

ABSTRACT

A major challenge in computational and systems neuroscience concerns the quantification of information processing at various scales of the brain’s anatomy. In particular, using human intracranial recordings, the question we ask in this paper is: How can we estimate the informational complexity of the brain given the complex temporal nature of its dynamics? To address this we work with a recent formulation of network integrated information that is based on the Kullback-Leibler divergence between the multivariate distribution on the set of network states versus the corresponding factorized distribution over its parts. In this work, we extend this formulation for temporal networks and then apply it to human brain data obtained from intracranial recordings in epilepsy patients. Our findings show that compared to random re-wirings of the data, functional connectivity networks, constructed from human brain data, score consistently higher in the above measure of integrated information. This work suggests that temporal integrated information may indeed be a good starting point as a future measure of cognitive complexity. More... »

PAGES

403-412

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-01421-6_39

DOI

http://dx.doi.org/10.1007/978-3-030-01421-6_39

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107244552


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Barcelona Institue of Science and Technology, Barcelona, Spain", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Universitat Pompeu Fabra, Barcelona, Spain", 
            "Institute for BioEngineering of Catalonia, Barcelona, Spain", 
            "Barcelona Institue of Science and Technology, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arsiwalla", 
        "givenName": "Xerxes D.", 
        "id": "sg:person.014222437475.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014222437475.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Barcelona Institue of Science and Technology, Barcelona, Spain", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Universitat Pompeu Fabra, Barcelona, Spain", 
            "Institute for BioEngineering of Catalonia, Barcelona, Spain", 
            "Barcelona Institue of Science and Technology, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pacheco", 
        "givenName": "Daniel", 
        "id": "sg:person.01262615720.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262615720.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hospital del Mar, Barcelona, Spain", 
          "id": "http://www.grid.ac/institutes/grid.411142.3", 
          "name": [
            "Hospital del Mar, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Principe", 
        "givenName": "Alessandro", 
        "id": "sg:person.01066703574.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066703574.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hospital del Mar, Barcelona, Spain", 
          "id": "http://www.grid.ac/institutes/grid.411142.3", 
          "name": [
            "Hospital del Mar, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rocamora", 
        "givenName": "Rodrigo", 
        "id": "sg:person.0652564334.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652564334.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituci\u00f3 Catalana de Recerca i Estudis Avan\u00e7ats (ICREA), Barcelona, Spain", 
          "id": "http://www.grid.ac/institutes/grid.425902.8", 
          "name": [
            "Institute for BioEngineering of Catalonia, Barcelona, Spain", 
            "Barcelona Institue of Science and Technology, Barcelona, Spain", 
            "Instituci\u00f3 Catalana de Recerca i Estudis Avan\u00e7ats (ICREA), Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Verschure", 
        "givenName": "Paul", 
        "id": "sg:person.011577410275.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011577410275.18"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2018-09-26", 
    "datePublishedReg": "2018-09-26", 
    "description": "A major challenge in computational and systems neuroscience concerns the quantification of information processing at various scales of the brain\u2019s anatomy. In particular, using human intracranial recordings, the question we ask in this paper is: How can we estimate the informational complexity of the brain given the complex temporal nature of its dynamics? To address this we work with a recent formulation of network integrated information that is based on the Kullback-Leibler divergence between the multivariate distribution on the set of network states versus the corresponding factorized distribution over its parts. In this work, we extend this formulation for temporal networks and then apply it to human brain data obtained from intracranial recordings in epilepsy patients. Our findings show that compared to random re-wirings of the data, functional connectivity networks, constructed from human brain data, score consistently higher in the above measure of integrated information. This work suggests that temporal integrated information may indeed be a good starting point as a future measure of cognitive complexity.", 
    "editor": [
      {
        "familyName": "K\u016frkov\u00e1", 
        "givenName": "V\u011bra", 
        "type": "Person"
      }, 
      {
        "familyName": "Manolopoulos", 
        "givenName": "Yannis", 
        "type": "Person"
      }, 
      {
        "familyName": "Hammer", 
        "givenName": "Barbara", 
        "type": "Person"
      }, 
      {
        "familyName": "Iliadis", 
        "givenName": "Lazaros", 
        "type": "Person"
      }, 
      {
        "familyName": "Maglogiannis", 
        "givenName": "Ilias", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-01421-6_39", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-01420-9", 
        "978-3-030-01421-6"
      ], 
      "name": "Artificial Neural Networks and Machine Learning \u2013 ICANN 2018", 
      "type": "Book"
    }, 
    "keywords": [
      "human brain data", 
      "brain data", 
      "corresponding factorized distribution", 
      "Kullback-Leibler divergence", 
      "temporal networks", 
      "network state", 
      "integrated information", 
      "factorized distribution", 
      "intracranial functional connectivity", 
      "network", 
      "temporal nature", 
      "good starting point", 
      "complexity", 
      "informational complexity", 
      "information", 
      "major challenge", 
      "functional connectivity networks", 
      "information processing", 
      "connectivity networks", 
      "computational", 
      "systems neuroscience", 
      "cognitive complexity", 
      "connectivity", 
      "processing", 
      "work", 
      "set", 
      "starting point", 
      "data", 
      "multivariate distributions", 
      "challenges", 
      "brain anatomy", 
      "above measures", 
      "temporal estimates", 
      "neuroscience", 
      "formulation", 
      "point", 
      "measures", 
      "recordings", 
      "recent formulation", 
      "part", 
      "state", 
      "nature", 
      "distribution", 
      "future measures", 
      "dynamics", 
      "questions", 
      "estimates", 
      "anatomy", 
      "human intracranial recordings", 
      "intracranial recordings", 
      "scale", 
      "functional connectivity", 
      "quantification", 
      "divergence", 
      "epilepsy patients", 
      "findings", 
      "brain", 
      "patients", 
      "paper", 
      "complex temporal nature"
    ], 
    "name": "A Temporal Estimate of Integrated Information for Intracranial Functional Connectivity", 
    "pagination": "403-412", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107244552"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-01421-6_39"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-01421-6_39", 
      "https://app.dimensions.ai/details/publication/pub.1107244552"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T18:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_149.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-030-01421-6_39"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-01421-6_39'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-01421-6_39'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-01421-6_39'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-01421-6_39'


 

This table displays all metadata directly associated to this object as RDF triples.

186 TRIPLES      23 PREDICATES      87 URIs      78 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-01421-6_39 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 anzsrc-for:17
4 anzsrc-for:1701
5 schema:author Nd465abc048a94dd0af879950eb8ae5e0
6 schema:datePublished 2018-09-26
7 schema:datePublishedReg 2018-09-26
8 schema:description A major challenge in computational and systems neuroscience concerns the quantification of information processing at various scales of the brain’s anatomy. In particular, using human intracranial recordings, the question we ask in this paper is: How can we estimate the informational complexity of the brain given the complex temporal nature of its dynamics? To address this we work with a recent formulation of network integrated information that is based on the Kullback-Leibler divergence between the multivariate distribution on the set of network states versus the corresponding factorized distribution over its parts. In this work, we extend this formulation for temporal networks and then apply it to human brain data obtained from intracranial recordings in epilepsy patients. Our findings show that compared to random re-wirings of the data, functional connectivity networks, constructed from human brain data, score consistently higher in the above measure of integrated information. This work suggests that temporal integrated information may indeed be a good starting point as a future measure of cognitive complexity.
9 schema:editor Nef39d477367f479c993fa8e2895432a3
10 schema:genre chapter
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf Nbe46c20e4f2f40c087d720b6a3c29742
14 schema:keywords Kullback-Leibler divergence
15 above measures
16 anatomy
17 brain
18 brain anatomy
19 brain data
20 challenges
21 cognitive complexity
22 complex temporal nature
23 complexity
24 computational
25 connectivity
26 connectivity networks
27 corresponding factorized distribution
28 data
29 distribution
30 divergence
31 dynamics
32 epilepsy patients
33 estimates
34 factorized distribution
35 findings
36 formulation
37 functional connectivity
38 functional connectivity networks
39 future measures
40 good starting point
41 human brain data
42 human intracranial recordings
43 information
44 information processing
45 informational complexity
46 integrated information
47 intracranial functional connectivity
48 intracranial recordings
49 major challenge
50 measures
51 multivariate distributions
52 nature
53 network
54 network state
55 neuroscience
56 paper
57 part
58 patients
59 point
60 processing
61 quantification
62 questions
63 recent formulation
64 recordings
65 scale
66 set
67 starting point
68 state
69 systems neuroscience
70 temporal estimates
71 temporal nature
72 temporal networks
73 work
74 schema:name A Temporal Estimate of Integrated Information for Intracranial Functional Connectivity
75 schema:pagination 403-412
76 schema:productId Na1f3db49f8a64ad0876a70f3a176c04f
77 Ne8b7d75f5ee64f5996c8bd020ed7431d
78 schema:publisher Ne474a18b8dfb46bbb5fec07fbeb8e8c5
79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107244552
80 https://doi.org/10.1007/978-3-030-01421-6_39
81 schema:sdDatePublished 2021-11-01T18:48
82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
83 schema:sdPublisher N2bf97c754b654a9e9cba54b2d51d3e7b
84 schema:url https://doi.org/10.1007/978-3-030-01421-6_39
85 sgo:license sg:explorer/license/
86 sgo:sdDataset chapters
87 rdf:type schema:Chapter
88 N2b4a0aca7d4346e59b0c996295696b8d rdf:first N7af8ef45d8394695ad34dfe4f7392049
89 rdf:rest N86810f9489a24a1daa790e9532f8906c
90 N2bf97c754b654a9e9cba54b2d51d3e7b schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 N2cb8243bb3004cdaa3581d24c25d09bd schema:familyName Manolopoulos
93 schema:givenName Yannis
94 rdf:type schema:Person
95 N30e53355053d4ad6b91443984cc2ad4a rdf:first N2cb8243bb3004cdaa3581d24c25d09bd
96 rdf:rest N2b4a0aca7d4346e59b0c996295696b8d
97 N3abd22e3089641aa9731697df5e2c1a2 schema:familyName Kůrková
98 schema:givenName Věra
99 rdf:type schema:Person
100 N49511e4220cb45f98ef69f1eff76a987 rdf:first sg:person.01066703574.53
101 rdf:rest Nbdb0413c7e4d4bf0a807eb049c33a235
102 N5d5f4894e0494dc887d6d85e882d033b schema:familyName Maglogiannis
103 schema:givenName Ilias
104 rdf:type schema:Person
105 N62d6cf77aacc4642b14a9452133f1c44 rdf:first sg:person.01262615720.50
106 rdf:rest N49511e4220cb45f98ef69f1eff76a987
107 N7af8ef45d8394695ad34dfe4f7392049 schema:familyName Hammer
108 schema:givenName Barbara
109 rdf:type schema:Person
110 N86810f9489a24a1daa790e9532f8906c rdf:first N8c34cd3bcde3480681aab82e33fadf36
111 rdf:rest Ne8d4dff6f4ed4344aff9bfe8a1a8e088
112 N8c34cd3bcde3480681aab82e33fadf36 schema:familyName Iliadis
113 schema:givenName Lazaros
114 rdf:type schema:Person
115 Na1f3db49f8a64ad0876a70f3a176c04f schema:name doi
116 schema:value 10.1007/978-3-030-01421-6_39
117 rdf:type schema:PropertyValue
118 Nbdb0413c7e4d4bf0a807eb049c33a235 rdf:first sg:person.0652564334.22
119 rdf:rest Ndf8f825137ec402aa822a1c902819d1b
120 Nbe46c20e4f2f40c087d720b6a3c29742 schema:isbn 978-3-030-01420-9
121 978-3-030-01421-6
122 schema:name Artificial Neural Networks and Machine Learning – ICANN 2018
123 rdf:type schema:Book
124 Nd465abc048a94dd0af879950eb8ae5e0 rdf:first sg:person.014222437475.71
125 rdf:rest N62d6cf77aacc4642b14a9452133f1c44
126 Ndf8f825137ec402aa822a1c902819d1b rdf:first sg:person.011577410275.18
127 rdf:rest rdf:nil
128 Ne474a18b8dfb46bbb5fec07fbeb8e8c5 schema:name Springer Nature
129 rdf:type schema:Organisation
130 Ne8b7d75f5ee64f5996c8bd020ed7431d schema:name dimensions_id
131 schema:value pub.1107244552
132 rdf:type schema:PropertyValue
133 Ne8d4dff6f4ed4344aff9bfe8a1a8e088 rdf:first N5d5f4894e0494dc887d6d85e882d033b
134 rdf:rest rdf:nil
135 Nef39d477367f479c993fa8e2895432a3 rdf:first N3abd22e3089641aa9731697df5e2c1a2
136 rdf:rest N30e53355053d4ad6b91443984cc2ad4a
137 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
138 schema:name Medical and Health Sciences
139 rdf:type schema:DefinedTerm
140 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
141 schema:name Neurosciences
142 rdf:type schema:DefinedTerm
143 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
144 schema:name Psychology and Cognitive Sciences
145 rdf:type schema:DefinedTerm
146 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
147 schema:name Psychology
148 rdf:type schema:DefinedTerm
149 sg:person.01066703574.53 schema:affiliation grid-institutes:grid.411142.3
150 schema:familyName Principe
151 schema:givenName Alessandro
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066703574.53
153 rdf:type schema:Person
154 sg:person.011577410275.18 schema:affiliation grid-institutes:grid.425902.8
155 schema:familyName Verschure
156 schema:givenName Paul
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011577410275.18
158 rdf:type schema:Person
159 sg:person.01262615720.50 schema:affiliation grid-institutes:None
160 schema:familyName Pacheco
161 schema:givenName Daniel
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262615720.50
163 rdf:type schema:Person
164 sg:person.014222437475.71 schema:affiliation grid-institutes:None
165 schema:familyName Arsiwalla
166 schema:givenName Xerxes D.
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014222437475.71
168 rdf:type schema:Person
169 sg:person.0652564334.22 schema:affiliation grid-institutes:grid.411142.3
170 schema:familyName Rocamora
171 schema:givenName Rodrigo
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652564334.22
173 rdf:type schema:Person
174 grid-institutes:None schema:alternateName Barcelona Institue of Science and Technology, Barcelona, Spain
175 schema:name Barcelona Institue of Science and Technology, Barcelona, Spain
176 Institute for BioEngineering of Catalonia, Barcelona, Spain
177 Universitat Pompeu Fabra, Barcelona, Spain
178 rdf:type schema:Organization
179 grid-institutes:grid.411142.3 schema:alternateName Hospital del Mar, Barcelona, Spain
180 schema:name Hospital del Mar, Barcelona, Spain
181 rdf:type schema:Organization
182 grid-institutes:grid.425902.8 schema:alternateName Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
183 schema:name Barcelona Institue of Science and Technology, Barcelona, Spain
184 Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
185 Institute for BioEngineering of Catalonia, Barcelona, Spain
186 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...