Universal Learning Machine – Principle, Method, and Engineering Model Contributions to ICIS 2018 View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-10-02

AUTHORS

Chuyu Xiong

ABSTRACT

Universal learning machine is a computing system that can automatically learn any computational task with sufficient data, and no need for manual presetting and intervention. Universal learning machine and universal learning theory are very important research topic. Many disciplines (AI, AGI, machine epistemology, neuroscience, computational theory, mathematics, etc.) cross here. In this article, we discuss the principles, methods, and engineering models of universal learning machine. X-form is the central concept and tool, which is introduced by examining objective and subjective patterns in details. We also discuss conceiving space and governing space, data sufficiency, learning strategies and methods, and engineering model. More... »

PAGES

88-101

References to SciGraph publications

Book

TITLE

Intelligence Science II

ISBN

978-3-030-01312-7
978-3-030-01313-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-01313-4_10

DOI

http://dx.doi.org/10.1007/978-3-030-01313-4_10

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107352171


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xiong", 
        "givenName": "Chuyu", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/1968.1972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038881641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s11671-018-2455-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100800944", 
          "https://doi.org/10.1186/s11671-018-2455-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-10-02", 
    "datePublishedReg": "2018-10-02", 
    "description": "Universal learning machine is a computing system that can automatically learn any computational task with sufficient data, and no need for manual presetting and intervention. Universal learning machine and universal learning theory are very important research topic. Many disciplines (AI, AGI, machine epistemology, neuroscience, computational theory, mathematics, etc.) cross here. In this article, we discuss the principles, methods, and engineering models of universal learning machine. X-form is the central concept and tool, which is introduced by examining objective and subjective patterns in details. We also discuss conceiving space and governing space, data sufficiency, learning strategies and methods, and engineering model.", 
    "editor": [
      {
        "familyName": "Shi", 
        "givenName": "Zhongzhi", 
        "type": "Person"
      }, 
      {
        "familyName": "Pennartz", 
        "givenName": "Cyriel", 
        "type": "Person"
      }, 
      {
        "familyName": "Huang", 
        "givenName": "Tiejun", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-01313-4_10", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-01312-7", 
        "978-3-030-01313-4"
      ], 
      "name": "Intelligence Science II", 
      "type": "Book"
    }, 
    "name": "Universal Learning Machine \u2013 Principle, Method, and Engineering Model Contributions to ICIS 2018", 
    "pagination": "88-101", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-01313-4_10"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3f273ae095527d86dfaec7a28d9e9a83bde5e18306f6772dccbcabcbe4a6c7e7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107352171"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-01313-4_10", 
      "https://app.dimensions.ai/details/publication/pub.1107352171"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T04:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000321_0000000321/records_74932_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-030-01313-4_10"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-01313-4_10'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-01313-4_10'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-01313-4_10'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-01313-4_10'


 

This table displays all metadata directly associated to this object as RDF triples.

80 TRIPLES      23 PREDICATES      28 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-01313-4_10 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ne2867e5bfc3e48108fd957412afeb737
4 schema:citation sg:pub.10.1186/s11671-018-2455-z
5 https://doi.org/10.1145/1968.1972
6 schema:datePublished 2018-10-02
7 schema:datePublishedReg 2018-10-02
8 schema:description Universal learning machine is a computing system that can automatically learn any computational task with sufficient data, and no need for manual presetting and intervention. Universal learning machine and universal learning theory are very important research topic. Many disciplines (AI, AGI, machine epistemology, neuroscience, computational theory, mathematics, etc.) cross here. In this article, we discuss the principles, methods, and engineering models of universal learning machine. X-form is the central concept and tool, which is introduced by examining objective and subjective patterns in details. We also discuss conceiving space and governing space, data sufficiency, learning strategies and methods, and engineering model.
9 schema:editor Nc08d4bf3fee04ca3a0e99c7cd3dd58a9
10 schema:genre chapter
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N32336f024a8e4930b496302176af6180
14 schema:name Universal Learning Machine – Principle, Method, and Engineering Model Contributions to ICIS 2018
15 schema:pagination 88-101
16 schema:productId N055da9d6a3ab4315a30c7db33a9fe0d5
17 Nc43767cbb50f4fdd8b7416b9e53ca21b
18 Ne1389c6543d64e5f9256395b744190c3
19 schema:publisher N6a81edbbf3944894a46a595113ace151
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107352171
21 https://doi.org/10.1007/978-3-030-01313-4_10
22 schema:sdDatePublished 2019-04-16T04:39
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher N5c787979124e4e019216cdcf4b800f45
25 schema:url https://link.springer.com/10.1007%2F978-3-030-01313-4_10
26 sgo:license sg:explorer/license/
27 sgo:sdDataset chapters
28 rdf:type schema:Chapter
29 N055da9d6a3ab4315a30c7db33a9fe0d5 schema:name doi
30 schema:value 10.1007/978-3-030-01313-4_10
31 rdf:type schema:PropertyValue
32 N32336f024a8e4930b496302176af6180 schema:isbn 978-3-030-01312-7
33 978-3-030-01313-4
34 schema:name Intelligence Science II
35 rdf:type schema:Book
36 N541008ea55424be7963bd2ff1eacc6c8 schema:familyName Huang
37 schema:givenName Tiejun
38 rdf:type schema:Person
39 N5c787979124e4e019216cdcf4b800f45 schema:name Springer Nature - SN SciGraph project
40 rdf:type schema:Organization
41 N67a90df3dfbb4313ab1b7c7049450490 schema:affiliation Nedd66c7a8da349f1a97fc3dae6d7f678
42 schema:familyName Xiong
43 schema:givenName Chuyu
44 rdf:type schema:Person
45 N6a81edbbf3944894a46a595113ace151 schema:location Cham
46 schema:name Springer International Publishing
47 rdf:type schema:Organisation
48 N7c0edadaa55f4888bbf2ae499b53cac5 rdf:first Na7ee3c76a4494dd9ae4b87258576d691
49 rdf:rest N9fa0fa5583a44f05bd2530883167edd7
50 N9fa0fa5583a44f05bd2530883167edd7 rdf:first N541008ea55424be7963bd2ff1eacc6c8
51 rdf:rest rdf:nil
52 Na7ee3c76a4494dd9ae4b87258576d691 schema:familyName Pennartz
53 schema:givenName Cyriel
54 rdf:type schema:Person
55 Nbe581f2bf48c499d9e92d68ee3999de9 schema:familyName Shi
56 schema:givenName Zhongzhi
57 rdf:type schema:Person
58 Nc08d4bf3fee04ca3a0e99c7cd3dd58a9 rdf:first Nbe581f2bf48c499d9e92d68ee3999de9
59 rdf:rest N7c0edadaa55f4888bbf2ae499b53cac5
60 Nc43767cbb50f4fdd8b7416b9e53ca21b schema:name dimensions_id
61 schema:value pub.1107352171
62 rdf:type schema:PropertyValue
63 Ne1389c6543d64e5f9256395b744190c3 schema:name readcube_id
64 schema:value 3f273ae095527d86dfaec7a28d9e9a83bde5e18306f6772dccbcabcbe4a6c7e7
65 rdf:type schema:PropertyValue
66 Ne2867e5bfc3e48108fd957412afeb737 rdf:first N67a90df3dfbb4313ab1b7c7049450490
67 rdf:rest rdf:nil
68 Nedd66c7a8da349f1a97fc3dae6d7f678 schema:name New York, USA
69 rdf:type schema:Organization
70 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
71 schema:name Information and Computing Sciences
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
74 schema:name Artificial Intelligence and Image Processing
75 rdf:type schema:DefinedTerm
76 sg:pub.10.1186/s11671-018-2455-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1100800944
77 https://doi.org/10.1186/s11671-018-2455-z
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1145/1968.1972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038881641
80 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...