Matrix Differential Equations for Pseudo-orthogonal Groups View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-10-12

AUTHORS

V. I. Chilin , K. K. Muminov

ABSTRACT

We consider a system of matrix differential equations whose nondegenerate solutions are O(n, p, R)-equivalent, where O(n, p, R) is the pseudo-orthogonal group of invertible linear transformations of Rn. We show that the class of first columns of the set of matrices that are nondegenerate solutions of this system coincides with the class of O(n, p, R)-equivalent paths in Rn. More... »

PAGES

85-92

References to SciGraph publications

Book

TITLE

Algebra, Complex Analysis, and Pluripotential Theory

ISBN

978-3-030-01143-7
978-3-030-01144-4

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-01144-4_7

DOI

http://dx.doi.org/10.1007/978-3-030-01144-4_7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107552191


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National University of Uzbekistan", 
          "id": "https://www.grid.ac/institutes/grid.23471.33", 
          "name": [
            "National University of Uzbekistan, Tashkent, Uzbekistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chilin", 
        "givenName": "V. I.", 
        "id": "sg:person.011474625151.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011474625151.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Uzbekistan", 
          "id": "https://www.grid.ac/institutes/grid.23471.33", 
          "name": [
            "National University of Uzbekistan, Tashkent, Uzbekistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Muminov", 
        "givenName": "K. K.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/b978-0-08-009699-5.50003-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001117258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3103/s1066369x07070018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009485416", 
          "https://doi.org/10.3103/s1066369x07070018"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-10-12", 
    "datePublishedReg": "2018-10-12", 
    "description": "We consider a system of matrix differential equations whose nondegenerate solutions are O(n, p, R)-equivalent, where O(n, p, R) is the pseudo-orthogonal group of invertible linear transformations of Rn. We show that the class of first columns of the set of matrices that are nondegenerate solutions of this system coincides with the class of O(n, p, R)-equivalent paths in Rn.", 
    "editor": [
      {
        "familyName": "Ibragimov", 
        "givenName": "Zair", 
        "type": "Person"
      }, 
      {
        "familyName": "Levenberg", 
        "givenName": "Norman", 
        "type": "Person"
      }, 
      {
        "familyName": "Rozikov", 
        "givenName": "Utkir", 
        "type": "Person"
      }, 
      {
        "familyName": "Sadullaev", 
        "givenName": "Azimbay", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-01144-4_7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-01143-7", 
        "978-3-030-01144-4"
      ], 
      "name": "Algebra, Complex Analysis, and Pluripotential Theory", 
      "type": "Book"
    }, 
    "name": "Matrix Differential Equations for Pseudo-orthogonal Groups", 
    "pagination": "85-92", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-01144-4_7"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "00c97f1ccb525c5a99ee563cd780ab8fc42128594d8cfc8b8d29474b2ad8d544"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107552191"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-01144-4_7", 
      "https://app.dimensions.ai/details/publication/pub.1107552191"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T04:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000321_0000000321/records_74936_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-030-01144-4_7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-01144-4_7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-01144-4_7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-01144-4_7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-01144-4_7'


 

This table displays all metadata directly associated to this object as RDF triples.

93 TRIPLES      23 PREDICATES      28 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-01144-4_7 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N267a8b16c62649d095fa349091ba1315
4 schema:citation sg:pub.10.3103/s1066369x07070018
5 https://doi.org/10.1016/b978-0-08-009699-5.50003-6
6 schema:datePublished 2018-10-12
7 schema:datePublishedReg 2018-10-12
8 schema:description We consider a system of matrix differential equations whose nondegenerate solutions are O(n, p, R)-equivalent, where O(n, p, R) is the pseudo-orthogonal group of invertible linear transformations of Rn. We show that the class of first columns of the set of matrices that are nondegenerate solutions of this system coincides with the class of O(n, p, R)-equivalent paths in Rn.
9 schema:editor N73febc03ab87484da923ffa9f52d6186
10 schema:genre chapter
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf Naba37162c74241c7bb083a75da9ed072
14 schema:name Matrix Differential Equations for Pseudo-orthogonal Groups
15 schema:pagination 85-92
16 schema:productId N36f6e1d9e3594071a5cca8bf8f661e75
17 Nda5d6c4d02b3439aa909f8b6b95a5d94
18 Nec1118e97cfb43159418e6ea04db29e7
19 schema:publisher N9253c15f699943ea8a2ec5e29dc838f6
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107552191
21 https://doi.org/10.1007/978-3-030-01144-4_7
22 schema:sdDatePublished 2019-04-16T04:39
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher N0865eb9390404caaace2e1914a67ae94
25 schema:url https://link.springer.com/10.1007%2F978-3-030-01144-4_7
26 sgo:license sg:explorer/license/
27 sgo:sdDataset chapters
28 rdf:type schema:Chapter
29 N0865eb9390404caaace2e1914a67ae94 schema:name Springer Nature - SN SciGraph project
30 rdf:type schema:Organization
31 N182a5b1e74c84f91a31806d5bf404151 schema:familyName Ibragimov
32 schema:givenName Zair
33 rdf:type schema:Person
34 N267a8b16c62649d095fa349091ba1315 rdf:first sg:person.011474625151.31
35 rdf:rest Na9c08a35ee7a4eca8ecf6087f8a50ca9
36 N2cc158c8ab024590836306c7668b0ae3 rdf:first N3ee77836b2374aed9da5d1f2c6b6ddf5
37 rdf:rest Nf6ea4920baa8461ab90f1e2e46f7c57b
38 N31809bc81aca4745a67c33b6e7f473d2 schema:familyName Levenberg
39 schema:givenName Norman
40 rdf:type schema:Person
41 N36f6e1d9e3594071a5cca8bf8f661e75 schema:name doi
42 schema:value 10.1007/978-3-030-01144-4_7
43 rdf:type schema:PropertyValue
44 N3ee77836b2374aed9da5d1f2c6b6ddf5 schema:familyName Rozikov
45 schema:givenName Utkir
46 rdf:type schema:Person
47 N73febc03ab87484da923ffa9f52d6186 rdf:first N182a5b1e74c84f91a31806d5bf404151
48 rdf:rest Ndc0de4919998405592ba03491aeb2acf
49 N9253c15f699943ea8a2ec5e29dc838f6 schema:location Cham
50 schema:name Springer International Publishing
51 rdf:type schema:Organisation
52 Na9c08a35ee7a4eca8ecf6087f8a50ca9 rdf:first Nb6ddb886789d49a286bf2a71e85a9e4c
53 rdf:rest rdf:nil
54 Naba37162c74241c7bb083a75da9ed072 schema:isbn 978-3-030-01143-7
55 978-3-030-01144-4
56 schema:name Algebra, Complex Analysis, and Pluripotential Theory
57 rdf:type schema:Book
58 Nb6ddb886789d49a286bf2a71e85a9e4c schema:affiliation https://www.grid.ac/institutes/grid.23471.33
59 schema:familyName Muminov
60 schema:givenName K. K.
61 rdf:type schema:Person
62 Nda5d6c4d02b3439aa909f8b6b95a5d94 schema:name readcube_id
63 schema:value 00c97f1ccb525c5a99ee563cd780ab8fc42128594d8cfc8b8d29474b2ad8d544
64 rdf:type schema:PropertyValue
65 Ndc0de4919998405592ba03491aeb2acf rdf:first N31809bc81aca4745a67c33b6e7f473d2
66 rdf:rest N2cc158c8ab024590836306c7668b0ae3
67 Nec1118e97cfb43159418e6ea04db29e7 schema:name dimensions_id
68 schema:value pub.1107552191
69 rdf:type schema:PropertyValue
70 Nf6ea4920baa8461ab90f1e2e46f7c57b rdf:first Nfe81be5689254a66b03a9fc4e4773d8c
71 rdf:rest rdf:nil
72 Nfe81be5689254a66b03a9fc4e4773d8c schema:familyName Sadullaev
73 schema:givenName Azimbay
74 rdf:type schema:Person
75 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
76 schema:name Mathematical Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
79 schema:name Pure Mathematics
80 rdf:type schema:DefinedTerm
81 sg:person.011474625151.31 schema:affiliation https://www.grid.ac/institutes/grid.23471.33
82 schema:familyName Chilin
83 schema:givenName V. I.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011474625151.31
85 rdf:type schema:Person
86 sg:pub.10.3103/s1066369x07070018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009485416
87 https://doi.org/10.3103/s1066369x07070018
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/b978-0-08-009699-5.50003-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001117258
90 rdf:type schema:CreativeWork
91 https://www.grid.ac/institutes/grid.23471.33 schema:alternateName National University of Uzbekistan
92 schema:name National University of Uzbekistan, Tashkent, Uzbekistan
93 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...