Isomorphic Classification of ∗-Algebras of Log-Integrable Measurable Functions View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-10-12

AUTHORS

R. Z. Abdullaev , V. I. Chilin

ABSTRACT

Let (Ω,μ) be a σ-finite measure space, and let L0(Ω,μ) be the ∗-algebra of all complex (real) valued measurable functions on (Ω,μ). The ∗-subalgebra Llog(Ω,μ)={f∈L0(Ω,μ):∫Ωlog(1+|f|)dμ<+∞} of L0(Ω,μ) is called the algebra of log-integrable measurable functions on (Ω,μ). Using the notion of passport of a normed Boolean algebra, we give the necessary and sufficient conditions for a ∗-isomorphism of two algebras of log-integrable measurable functions. More... »

PAGES

73-83

References to SciGraph publications

  • 2016-12. Algebras of Log-Integrable Functions and Operators in COMPLEX ANALYSIS AND OPERATOR THEORY
  • Book

    TITLE

    Algebra, Complex Analysis, and Pluripotential Theory

    ISBN

    978-3-030-01143-7
    978-3-030-01144-4

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-030-01144-4_6

    DOI

    http://dx.doi.org/10.1007/978-3-030-01144-4_6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1107552190


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Uzbek State University of World Languages", 
              "id": "https://www.grid.ac/institutes/grid.445290.e", 
              "name": [
                "Uzbek State University of World Languages, Tashkent, Uzbekistan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Abdullaev", 
            "givenName": "R. Z.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National University of Uzbekistan", 
              "id": "https://www.grid.ac/institutes/grid.23471.33", 
              "name": [
                "National University of Uzbekistan, Tashkent, Uzbekistan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chilin", 
            "givenName": "V. I.", 
            "id": "sg:person.011474625151.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011474625151.31"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11785-016-0569-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010237387", 
              "https://doi.org/10.1007/s11785-016-0569-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5802/ambp.101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1073139696"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-10-12", 
        "datePublishedReg": "2018-10-12", 
        "description": "Let (\u03a9,\u03bc) be a \u03c3-finite measure space, and let L0(\u03a9,\u03bc) be the \u2217-algebra of all complex (real) valued measurable functions on (\u03a9,\u03bc). The \u2217-subalgebra Llog(\u03a9,\u03bc)={f\u2208L0(\u03a9,\u03bc):\u222b\u03a9log(1+|f|)d\u03bc<+\u221e} of L0(\u03a9,\u03bc) is called the algebra of log-integrable measurable functions on (\u03a9,\u03bc). Using the notion of passport of a normed Boolean algebra, we give the necessary and sufficient conditions for a \u2217-isomorphism of two algebras of log-integrable measurable functions.", 
        "editor": [
          {
            "familyName": "Ibragimov", 
            "givenName": "Zair", 
            "type": "Person"
          }, 
          {
            "familyName": "Levenberg", 
            "givenName": "Norman", 
            "type": "Person"
          }, 
          {
            "familyName": "Rozikov", 
            "givenName": "Utkir", 
            "type": "Person"
          }, 
          {
            "familyName": "Sadullaev", 
            "givenName": "Azimbay", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-030-01144-4_6", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-030-01143-7", 
            "978-3-030-01144-4"
          ], 
          "name": "Algebra, Complex Analysis, and Pluripotential Theory", 
          "type": "Book"
        }, 
        "name": "Isomorphic Classification of \u2217-Algebras of Log-Integrable Measurable Functions", 
        "pagination": "73-83", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-030-01144-4_6"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "729c684be834f1b02ca6e0c1ad309ade7a6077abc99ee43f66062da617af25d3"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1107552190"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-030-01144-4_6", 
          "https://app.dimensions.ai/details/publication/pub.1107552190"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T04:39", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000321_0000000321/records_74935_00000000.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-3-030-01144-4_6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-01144-4_6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-01144-4_6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-01144-4_6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-01144-4_6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    96 TRIPLES      23 PREDICATES      28 URIs      19 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-030-01144-4_6 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N73ace1316f544e438de17ca863129a43
    4 schema:citation sg:pub.10.1007/s11785-016-0569-9
    5 https://doi.org/10.5802/ambp.101
    6 schema:datePublished 2018-10-12
    7 schema:datePublishedReg 2018-10-12
    8 schema:description Let (Ω,μ) be a σ-finite measure space, and let L0(Ω,μ) be the ∗-algebra of all complex (real) valued measurable functions on (Ω,μ). The ∗-subalgebra Llog(Ω,μ)={f∈L0(Ω,μ):∫Ωlog(1+|f|)dμ<+∞} of L0(Ω,μ) is called the algebra of log-integrable measurable functions on (Ω,μ). Using the notion of passport of a normed Boolean algebra, we give the necessary and sufficient conditions for a ∗-isomorphism of two algebras of log-integrable measurable functions.
    9 schema:editor N8ad9fb69b316436a943a3e3fdc6ddd30
    10 schema:genre chapter
    11 schema:inLanguage en
    12 schema:isAccessibleForFree false
    13 schema:isPartOf Nb085778c6d434f63a31ccf30d9135b6b
    14 schema:name Isomorphic Classification of ∗-Algebras of Log-Integrable Measurable Functions
    15 schema:pagination 73-83
    16 schema:productId N0008d97834fc4495ba14bcfda11882f3
    17 N9c80ed97241d49289be4d4a19e49c009
    18 Nac9e266c99294051b19f076b46a74b79
    19 schema:publisher N0f19a9d9226c4c2eb8daec696f3bf7a6
    20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107552190
    21 https://doi.org/10.1007/978-3-030-01144-4_6
    22 schema:sdDatePublished 2019-04-16T04:39
    23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    24 schema:sdPublisher Nd100d3cb031e423396dce6d8e598d5c9
    25 schema:url https://link.springer.com/10.1007%2F978-3-030-01144-4_6
    26 sgo:license sg:explorer/license/
    27 sgo:sdDataset chapters
    28 rdf:type schema:Chapter
    29 N0008d97834fc4495ba14bcfda11882f3 schema:name dimensions_id
    30 schema:value pub.1107552190
    31 rdf:type schema:PropertyValue
    32 N0f19a9d9226c4c2eb8daec696f3bf7a6 schema:location Cham
    33 schema:name Springer International Publishing
    34 rdf:type schema:Organisation
    35 N1c8f3928fc224dbfb2ad6f316ca7fb7f schema:familyName Ibragimov
    36 schema:givenName Zair
    37 rdf:type schema:Person
    38 N20f92fbd69124f1ead0cfb2056837bd0 schema:familyName Levenberg
    39 schema:givenName Norman
    40 rdf:type schema:Person
    41 N5d93983b97ea4195a11a967799fab7aa schema:affiliation https://www.grid.ac/institutes/grid.445290.e
    42 schema:familyName Abdullaev
    43 schema:givenName R. Z.
    44 rdf:type schema:Person
    45 N73ace1316f544e438de17ca863129a43 rdf:first N5d93983b97ea4195a11a967799fab7aa
    46 rdf:rest Ncfec2f6077a647e08f0418c92ce56fd1
    47 N8861bebaf01c418baa6d1afcc85e0119 schema:familyName Sadullaev
    48 schema:givenName Azimbay
    49 rdf:type schema:Person
    50 N8ad9fb69b316436a943a3e3fdc6ddd30 rdf:first N1c8f3928fc224dbfb2ad6f316ca7fb7f
    51 rdf:rest N9a17e6e6f69a4d5ea297974012e5958c
    52 N9a17e6e6f69a4d5ea297974012e5958c rdf:first N20f92fbd69124f1ead0cfb2056837bd0
    53 rdf:rest Nadd99e09ea164291aa4f25662a8750a9
    54 N9c80ed97241d49289be4d4a19e49c009 schema:name doi
    55 schema:value 10.1007/978-3-030-01144-4_6
    56 rdf:type schema:PropertyValue
    57 Naa57241128c64dcda971c7c627b2505a schema:familyName Rozikov
    58 schema:givenName Utkir
    59 rdf:type schema:Person
    60 Nac9e266c99294051b19f076b46a74b79 schema:name readcube_id
    61 schema:value 729c684be834f1b02ca6e0c1ad309ade7a6077abc99ee43f66062da617af25d3
    62 rdf:type schema:PropertyValue
    63 Nadd99e09ea164291aa4f25662a8750a9 rdf:first Naa57241128c64dcda971c7c627b2505a
    64 rdf:rest Nb02b120ea3a34d4ea32eb20fc4684587
    65 Nb02b120ea3a34d4ea32eb20fc4684587 rdf:first N8861bebaf01c418baa6d1afcc85e0119
    66 rdf:rest rdf:nil
    67 Nb085778c6d434f63a31ccf30d9135b6b schema:isbn 978-3-030-01143-7
    68 978-3-030-01144-4
    69 schema:name Algebra, Complex Analysis, and Pluripotential Theory
    70 rdf:type schema:Book
    71 Ncfec2f6077a647e08f0418c92ce56fd1 rdf:first sg:person.011474625151.31
    72 rdf:rest rdf:nil
    73 Nd100d3cb031e423396dce6d8e598d5c9 schema:name Springer Nature - SN SciGraph project
    74 rdf:type schema:Organization
    75 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    76 schema:name Mathematical Sciences
    77 rdf:type schema:DefinedTerm
    78 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    79 schema:name Pure Mathematics
    80 rdf:type schema:DefinedTerm
    81 sg:person.011474625151.31 schema:affiliation https://www.grid.ac/institutes/grid.23471.33
    82 schema:familyName Chilin
    83 schema:givenName V. I.
    84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011474625151.31
    85 rdf:type schema:Person
    86 sg:pub.10.1007/s11785-016-0569-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010237387
    87 https://doi.org/10.1007/s11785-016-0569-9
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.5802/ambp.101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073139696
    90 rdf:type schema:CreativeWork
    91 https://www.grid.ac/institutes/grid.23471.33 schema:alternateName National University of Uzbekistan
    92 schema:name National University of Uzbekistan, Tashkent, Uzbekistan
    93 rdf:type schema:Organization
    94 https://www.grid.ac/institutes/grid.445290.e schema:alternateName Uzbek State University of World Languages
    95 schema:name Uzbek State University of World Languages, Tashkent, Uzbekistan
    96 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...