Using the Anisotropic Laplace Equation to Compute Cortical Thickness View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-09-13

AUTHORS

Anand A. Joshi , Chitresh Bhushan , Ronald Salloum , Jessica L. Wisnowski , David W. Shattuck , Richard M. Leahy

ABSTRACT

Automatic computation of cortical thickness is a critical step when investigating neuroanatomical population differences and changes associated with normal development and aging, as well as in neurodegenerative diseases including Alzheimer's and Parkinson's. Limited spatial resolution and partial volume effects, in which more than one tissue type is represented in each voxel, have a significant impact on the accuracy of thickness estimates, particularly if a hard intensity threshold is used to delineate cortical boundaries. We describe a novel method based on the anisotropic heat equation that explicitly accounts for the presence of partial tissue volumes to more accurately estimate cortical thickness. The anisotropic term uses gray matter fractions to incorporate partial tissue voxels into the thickness calculation, as demonstrated through simulations and experiments. We also show that the proposed method is robust to the effects of finite voxel resolution and blurring. In comparison to methods based on hard intensity thresholds, the heat equation based method yields results with in-vivo data that are more consistent with histological findings reported in the literature. We also performed a test-retest study across scanners that indicated improved consistency and robustness to scanner differences. More... »

PAGES

549-556

Book

TITLE

Medical Image Computing and Computer Assisted Intervention – MICCAI 2018

ISBN

978-3-030-00930-4
978-3-030-00931-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-00931-1_63

DOI

http://dx.doi.org/10.1007/978-3-030-00931-1_63

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107028115

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30734031


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Southern California", 
          "id": "https://www.grid.ac/institutes/grid.42505.36", 
          "name": [
            "University of Southern California, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Joshi", 
        "givenName": "Anand A.", 
        "id": "sg:person.012434776637.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012434776637.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "General Electric (United States)", 
          "id": "https://www.grid.ac/institutes/grid.418143.b", 
          "name": [
            "General Electric, Niskayuna, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhushan", 
        "givenName": "Chitresh", 
        "id": "sg:person.01045037044.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01045037044.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Southern California", 
          "id": "https://www.grid.ac/institutes/grid.42505.36", 
          "name": [
            "University of Southern California, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Salloum", 
        "givenName": "Ronald", 
        "id": "sg:person.01326717345.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326717345.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Southern California", 
          "id": "https://www.grid.ac/institutes/grid.42505.36", 
          "name": [
            "University of Southern California, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wisnowski", 
        "givenName": "Jessica L.", 
        "id": "sg:person.0714525026.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714525026.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California Los Angeles", 
          "id": "https://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "University of California, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shattuck", 
        "givenName": "David W.", 
        "id": "sg:person.01036021411.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036021411.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Southern California", 
          "id": "https://www.grid.ac/institutes/grid.42505.36", 
          "name": [
            "University of Southern California, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leahy", 
        "givenName": "Richard M.", 
        "id": "sg:person.0726112211.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726112211.11"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/hbm.20740", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000415972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2014.05.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003546913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0402680101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008422748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2012/870196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010349604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2008.01.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013856304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1097-0193(200009)11:1<12::aid-hbm20>3.0.co;2-k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023516816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.200033797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024267148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000103258", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024691763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1361-8415(02)00054-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030762620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2008.12.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036406424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.media.2009.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036764619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2004.07.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041088158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.22826", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044287149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.media.2008.10.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051169181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2011.05.053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053545480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2009.2016163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061642178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isbi.2002.1029297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077957821"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-09-13", 
    "datePublishedReg": "2018-09-13", 
    "description": "Automatic computation of cortical thickness is a critical step when investigating neuroanatomical population differences and changes associated with normal development and aging, as well as in neurodegenerative diseases including Alzheimer's and Parkinson's. Limited spatial resolution and partial volume effects, in which more than one tissue type is represented in each voxel, have a significant impact on the accuracy of thickness estimates, particularly if a hard intensity threshold is used to delineate cortical boundaries. We describe a novel method based on the anisotropic heat equation that explicitly accounts for the presence of partial tissue volumes to more accurately estimate cortical thickness. The anisotropic term uses gray matter fractions to incorporate partial tissue voxels into the thickness calculation, as demonstrated through simulations and experiments. We also show that the proposed method is robust to the effects of finite voxel resolution and blurring. In comparison to methods based on hard intensity thresholds, the heat equation based method yields results with in-vivo data that are more consistent with histological findings reported in the literature. We also performed a test-retest study across scanners that indicated improved consistency and robustness to scanner differences.", 
    "editor": [
      {
        "familyName": "Frangi", 
        "givenName": "Alejandro F.", 
        "type": "Person"
      }, 
      {
        "familyName": "Schnabel", 
        "givenName": "Julia A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Davatzikos", 
        "givenName": "Christos", 
        "type": "Person"
      }, 
      {
        "familyName": "Alberola-L\u00f3pez", 
        "givenName": "Carlos", 
        "type": "Person"
      }, 
      {
        "familyName": "Fichtinger", 
        "givenName": "Gabor", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-00931-1_63", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-00930-4", 
        "978-3-030-00931-1"
      ], 
      "name": "Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2018", 
      "type": "Book"
    }, 
    "name": "Using the Anisotropic Laplace Equation to Compute Cortical Thickness", 
    "pagination": "549-556", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-00931-1_63"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "baa85bebf6740f78caa4eb7aeed64e311fceeafd43e18cc6d0e8ea7e72160183"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107028115"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30734031"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-00931-1_63", 
      "https://app.dimensions.ai/details/publication/pub.1107028115"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T05:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000332_0000000332/records_121921_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-030-00931-1_63"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-00931-1_63'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-00931-1_63'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-00931-1_63'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-00931-1_63'


 

This table displays all metadata directly associated to this object as RDF triples.

181 TRIPLES      23 PREDICATES      44 URIs      20 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-00931-1_63 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author Na75568c00d7941b2afa377bd48fd13c0
4 schema:citation https://doi.org/10.1002/1097-0193(200009)11:1<12::aid-hbm20>3.0.co;2-k
5 https://doi.org/10.1002/hbm.20740
6 https://doi.org/10.1002/hbm.22826
7 https://doi.org/10.1016/j.media.2008.10.006
8 https://doi.org/10.1016/j.media.2009.07.003
9 https://doi.org/10.1016/j.neuroimage.2004.07.045
10 https://doi.org/10.1016/j.neuroimage.2008.01.027
11 https://doi.org/10.1016/j.neuroimage.2008.12.016
12 https://doi.org/10.1016/j.neuroimage.2011.05.053
13 https://doi.org/10.1016/j.neuroimage.2014.05.044
14 https://doi.org/10.1016/s1361-8415(02)00054-3
15 https://doi.org/10.1073/pnas.0402680101
16 https://doi.org/10.1073/pnas.200033797
17 https://doi.org/10.1109/isbi.2002.1029297
18 https://doi.org/10.1109/tip.2009.2016163
19 https://doi.org/10.1155/2012/870196
20 https://doi.org/10.1159/000103258
21 schema:datePublished 2018-09-13
22 schema:datePublishedReg 2018-09-13
23 schema:description Automatic computation of cortical thickness is a critical step when investigating neuroanatomical population differences and changes associated with normal development and aging, as well as in neurodegenerative diseases including Alzheimer's and Parkinson's. Limited spatial resolution and partial volume effects, in which more than one tissue type is represented in each voxel, have a significant impact on the accuracy of thickness estimates, particularly if a hard intensity threshold is used to delineate cortical boundaries. We describe a novel method based on the anisotropic heat equation that explicitly accounts for the presence of partial tissue volumes to more accurately estimate cortical thickness. The anisotropic term uses gray matter fractions to incorporate partial tissue voxels into the thickness calculation, as demonstrated through simulations and experiments. We also show that the proposed method is robust to the effects of finite voxel resolution and blurring. In comparison to methods based on hard intensity thresholds, the heat equation based method yields results with in-vivo data that are more consistent with histological findings reported in the literature. We also performed a test-retest study across scanners that indicated improved consistency and robustness to scanner differences.
24 schema:editor N0f71e6098f0841c7a62a92fdede4db5e
25 schema:genre chapter
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N03799efc70444bfd8cd463d19d793e60
29 schema:name Using the Anisotropic Laplace Equation to Compute Cortical Thickness
30 schema:pagination 549-556
31 schema:productId N2784fe27cd19449ca33175c2c2cf9694
32 N313697b154d54559b76f303ee9975c31
33 N3bfa605ec0c24712a18d916485008efe
34 Nc4c13e9efea941e9b95fd6e397d7f77f
35 schema:publisher N6fed2805803341b686f5218388febad5
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107028115
37 https://doi.org/10.1007/978-3-030-00931-1_63
38 schema:sdDatePublished 2019-04-16T05:09
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher N2cc0e2754f414579b9315867497df163
41 schema:url https://link.springer.com/10.1007%2F978-3-030-00931-1_63
42 sgo:license sg:explorer/license/
43 sgo:sdDataset chapters
44 rdf:type schema:Chapter
45 N03799efc70444bfd8cd463d19d793e60 schema:isbn 978-3-030-00930-4
46 978-3-030-00931-1
47 schema:name Medical Image Computing and Computer Assisted Intervention – MICCAI 2018
48 rdf:type schema:Book
49 N0f71e6098f0841c7a62a92fdede4db5e rdf:first Nb45b00b75b5b44bb9c03418a7b8f7c3a
50 rdf:rest N8d303ab9e56a4a41b5159e957c834d40
51 N2784fe27cd19449ca33175c2c2cf9694 schema:name doi
52 schema:value 10.1007/978-3-030-00931-1_63
53 rdf:type schema:PropertyValue
54 N2cc0e2754f414579b9315867497df163 schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 N2e292ca630d54b5f9fe8b1216916835c rdf:first Na349d8f524f7449dbe60748939e1885c
57 rdf:rest rdf:nil
58 N313697b154d54559b76f303ee9975c31 schema:name readcube_id
59 schema:value baa85bebf6740f78caa4eb7aeed64e311fceeafd43e18cc6d0e8ea7e72160183
60 rdf:type schema:PropertyValue
61 N3bfa605ec0c24712a18d916485008efe schema:name pubmed_id
62 schema:value 30734031
63 rdf:type schema:PropertyValue
64 N3d8c0b1fadeb4dae93010bcd1434321f rdf:first sg:person.01036021411.12
65 rdf:rest Nc1a58b9cbae64a34b288ec837fdb5f82
66 N4a8d4c46e56b4abd92b95d5744ccacf8 rdf:first sg:person.01326717345.13
67 rdf:rest N905e4ad090d34d27a84bc500f1383c65
68 N6fed2805803341b686f5218388febad5 schema:location Cham
69 schema:name Springer International Publishing
70 rdf:type schema:Organisation
71 N8d03011c54204d77b8b012d519e1cdc2 schema:familyName Davatzikos
72 schema:givenName Christos
73 rdf:type schema:Person
74 N8d303ab9e56a4a41b5159e957c834d40 rdf:first Nb00d012798b94d53a1c629b67b30451b
75 rdf:rest Na909b2b1a8344c0b9ffcd3006c10beed
76 N905e4ad090d34d27a84bc500f1383c65 rdf:first sg:person.0714525026.07
77 rdf:rest N3d8c0b1fadeb4dae93010bcd1434321f
78 Na349d8f524f7449dbe60748939e1885c schema:familyName Fichtinger
79 schema:givenName Gabor
80 rdf:type schema:Person
81 Na75568c00d7941b2afa377bd48fd13c0 rdf:first sg:person.012434776637.03
82 rdf:rest Nda59bc62413c4cbba5951f8f9c5ad131
83 Na909b2b1a8344c0b9ffcd3006c10beed rdf:first N8d03011c54204d77b8b012d519e1cdc2
84 rdf:rest Nf59b96e6b2784d589b9f850eb01dd486
85 Nb00d012798b94d53a1c629b67b30451b schema:familyName Schnabel
86 schema:givenName Julia A.
87 rdf:type schema:Person
88 Nb45b00b75b5b44bb9c03418a7b8f7c3a schema:familyName Frangi
89 schema:givenName Alejandro F.
90 rdf:type schema:Person
91 Nc1a58b9cbae64a34b288ec837fdb5f82 rdf:first sg:person.0726112211.11
92 rdf:rest rdf:nil
93 Nc4c13e9efea941e9b95fd6e397d7f77f schema:name dimensions_id
94 schema:value pub.1107028115
95 rdf:type schema:PropertyValue
96 Nda385ef521754bb7b63fc501af557f25 schema:familyName Alberola-López
97 schema:givenName Carlos
98 rdf:type schema:Person
99 Nda59bc62413c4cbba5951f8f9c5ad131 rdf:first sg:person.01045037044.65
100 rdf:rest N4a8d4c46e56b4abd92b95d5744ccacf8
101 Nf59b96e6b2784d589b9f850eb01dd486 rdf:first Nda385ef521754bb7b63fc501af557f25
102 rdf:rest N2e292ca630d54b5f9fe8b1216916835c
103 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
104 schema:name Medical and Health Sciences
105 rdf:type schema:DefinedTerm
106 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
107 schema:name Neurosciences
108 rdf:type schema:DefinedTerm
109 sg:person.01036021411.12 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
110 schema:familyName Shattuck
111 schema:givenName David W.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036021411.12
113 rdf:type schema:Person
114 sg:person.01045037044.65 schema:affiliation https://www.grid.ac/institutes/grid.418143.b
115 schema:familyName Bhushan
116 schema:givenName Chitresh
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01045037044.65
118 rdf:type schema:Person
119 sg:person.012434776637.03 schema:affiliation https://www.grid.ac/institutes/grid.42505.36
120 schema:familyName Joshi
121 schema:givenName Anand A.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012434776637.03
123 rdf:type schema:Person
124 sg:person.01326717345.13 schema:affiliation https://www.grid.ac/institutes/grid.42505.36
125 schema:familyName Salloum
126 schema:givenName Ronald
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326717345.13
128 rdf:type schema:Person
129 sg:person.0714525026.07 schema:affiliation https://www.grid.ac/institutes/grid.42505.36
130 schema:familyName Wisnowski
131 schema:givenName Jessica L.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714525026.07
133 rdf:type schema:Person
134 sg:person.0726112211.11 schema:affiliation https://www.grid.ac/institutes/grid.42505.36
135 schema:familyName Leahy
136 schema:givenName Richard M.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726112211.11
138 rdf:type schema:Person
139 https://doi.org/10.1002/1097-0193(200009)11:1<12::aid-hbm20>3.0.co;2-k schema:sameAs https://app.dimensions.ai/details/publication/pub.1023516816
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1002/hbm.20740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000415972
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1002/hbm.22826 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044287149
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.media.2008.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051169181
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.media.2009.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036764619
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.neuroimage.2004.07.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041088158
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.neuroimage.2008.01.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013856304
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.neuroimage.2008.12.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036406424
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.neuroimage.2011.05.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053545480
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.neuroimage.2014.05.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003546913
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/s1361-8415(02)00054-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030762620
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1073/pnas.0402680101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008422748
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1073/pnas.200033797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024267148
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1109/isbi.2002.1029297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077957821
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1109/tip.2009.2016163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061642178
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1155/2012/870196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010349604
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1159/000103258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024691763
172 rdf:type schema:CreativeWork
173 https://www.grid.ac/institutes/grid.19006.3e schema:alternateName University of California Los Angeles
174 schema:name University of California, Los Angeles, CA, USA
175 rdf:type schema:Organization
176 https://www.grid.ac/institutes/grid.418143.b schema:alternateName General Electric (United States)
177 schema:name General Electric, Niskayuna, NY, USA
178 rdf:type schema:Organization
179 https://www.grid.ac/institutes/grid.42505.36 schema:alternateName University of Southern California
180 schema:name University of Southern California, Los Angeles, CA, USA
181 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...