Ontology type: schema:Chapter
2018
AUTHORSDwarikanath Mahapatra , Zongyuan Ge , Suman Sedai , Rajib Chakravorty
ABSTRACTMedical image registration and segmentation are complementary functions and combining them can improve each other’s performance. Conventional deep learning (DL) based approaches tackle the two problems separately without leveraging their mutually beneficial information. We propose a DL based approach for joint registration and segmentation (JRS) of chest Xray images. Generative adversarial networks (GANs) are trained to register a floating image to a reference image by combining their segmentation map similarity with conventional feature maps. Intermediate segmentation maps from the GAN’s convolution layers are used in the training stage to generate the final segmentation mask at test time. Experiments on chest Xray images show that JRS gives better registration and segmentation performance than when solving them separately. More... »
PAGES73-80
Machine Learning in Medical Imaging
ISBN
978-3-030-00918-2
978-3-030-00919-9
http://scigraph.springernature.com/pub.10.1007/978-3-030-00919-9_9
DOIhttp://dx.doi.org/10.1007/978-3-030-00919-9_9
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1107038102
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "IBM Research - Australia",
"id": "https://www.grid.ac/institutes/grid.481553.e",
"name": [
"IBM Research Australia"
],
"type": "Organization"
},
"familyName": "Mahapatra",
"givenName": "Dwarikanath",
"id": "sg:person.01100662063.91",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100662063.91"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Monash University",
"id": "https://www.grid.ac/institutes/grid.1002.3",
"name": [
"Monash University"
],
"type": "Organization"
},
"familyName": "Ge",
"givenName": "Zongyuan",
"id": "sg:person.013723142763.21",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013723142763.21"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "IBM Research - Australia",
"id": "https://www.grid.ac/institutes/grid.481553.e",
"name": [
"IBM Research Australia"
],
"type": "Organization"
},
"familyName": "Sedai",
"givenName": "Suman",
"id": "sg:person.0754065601.77",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754065601.77"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "IBM Research - Australia",
"id": "https://www.grid.ac/institutes/grid.481553.e",
"name": [
"IBM Research Australia"
],
"type": "Organization"
},
"familyName": "Chakravorty",
"givenName": "Rajib",
"id": "sg:person.01267151770.34",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267151770.34"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1109/tmi.2009.2035616",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001635701"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.media.2005.02.002",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002136321"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.media.2005.02.002",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002136321"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-24574-4_28",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017774818",
"https://doi.org/10.1007/978-3-319-24574-4_28"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.acra.2006.05.017",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045678547"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-15705-9_60",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046773715",
"https://doi.org/10.1007/978-3-642-15705-9_60"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-15705-9_60",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046773715",
"https://doi.org/10.1007/978-3-642-15705-9_60"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tip.2003.819861",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061640964"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-66185-8_49",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1091428121",
"https://doi.org/10.1007/978-3-319-66185-8_49"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-66182-7_31",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1091428447",
"https://doi.org/10.1007/978-3-319-66182-7_31"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-66179-7_71",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1091432029",
"https://doi.org/10.1007/978-3-319-66179-7_71"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/cvpr.2016.319",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1093270996"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/cvpr.2015.7298965",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1093626237"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/iccv.2015.316",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1093818236"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/cvpr.2017.369",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1095848734"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/iccv.2017.244",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1100060220"
],
"type": "CreativeWork"
}
],
"datePublished": "2018",
"datePublishedReg": "2018-01-01",
"description": "Medical image registration and segmentation are complementary functions and combining them can improve each other\u2019s performance. Conventional deep learning (DL) based approaches tackle the two problems separately without leveraging their mutually beneficial information. We propose a DL based approach for joint registration and segmentation (JRS) of chest Xray images. Generative adversarial networks (GANs) are trained to register a floating image to a reference image by combining their segmentation map similarity with conventional feature maps. Intermediate segmentation maps from the GAN\u2019s convolution layers are used in the training stage to generate the final segmentation mask at test time. Experiments on chest Xray images show that JRS gives better registration and segmentation performance than when solving them separately.",
"editor": [
{
"familyName": "Shi",
"givenName": "Yinghuan",
"type": "Person"
},
{
"familyName": "Suk",
"givenName": "Heung-Il",
"type": "Person"
},
{
"familyName": "Liu",
"givenName": "Mingxia",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-030-00919-9_9",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-030-00918-2",
"978-3-030-00919-9"
],
"name": "Machine Learning in Medical Imaging",
"type": "Book"
},
"name": "Joint Registration And Segmentation Of Xray Images Using Generative Adversarial Networks",
"pagination": "73-80",
"productId": [
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-030-00919-9_9"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"b81c6ca8f0c2fab5ba1d815e6dc49cf381b529f1516e76ea718cd96f86baf764"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1107038102"
]
}
],
"publisher": {
"location": "Cham",
"name": "Springer International Publishing",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-030-00919-9_9",
"https://app.dimensions.ai/details/publication/pub.1107038102"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-15T20:35",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000526.jsonl",
"type": "Chapter",
"url": "http://link.springer.com/10.1007/978-3-030-00919-9_9"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-00919-9_9'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-00919-9_9'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-00919-9_9'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-00919-9_9'
This table displays all metadata directly associated to this object as RDF triples.
146 TRIPLES
23 PREDICATES
41 URIs
20 LITERALS
8 BLANK NODES