CT Image Enhancement Using Stacked Generative Adversarial Networks and Transfer Learning for Lesion Segmentation Improvement View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2018

AUTHORS

Youbao Tang , Jinzheng Cai , Le Lu , Adam P. Harrison , Ke Yan , Jing Xiao , Lin Yang , Ronald M. Summers

ABSTRACT

Automated lesion segmentation from computed tomography (CT) is an important and challenging task in medical image analysis. While many advancements have been made, there is room for continued improvements. One hurdle is that CT images can exhibit high noise and low contrast, particularly in lower dosages. To address this, we focus on a preprocessing method for CT images that uses stacked generative adversarial networks (SGAN) approach. The first GAN reduces the noise in the CT image and the second GAN generates a higher resolution image with enhanced boundaries and high contrast. To make up for the absence of high quality CT images, we detail how to synthesize a large number of low- and high-quality natural images and use transfer learning with progressively larger amounts of CT images. We apply both the classic GrabCut method and the modern holistically nested network (HNN) to lesion segmentation, testing whether SGAN can yield improved lesion segmentation. Experimental results on the DeepLesion dataset demonstrate that the SGAN enhancements alone can push GrabCut performance over HNN trained on original images. We also demonstrate that HNN + SGAN performs best compared against four other enhancement methods, including when using only a single GAN. More... »

PAGES

46-54

Book

TITLE

Machine Learning in Medical Imaging

ISBN

978-3-030-00918-2
978-3-030-00919-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-00919-9_6

DOI

http://dx.doi.org/10.1007/978-3-030-00919-9_6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107037320


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "National Institutes of Health Clinical Center"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tang", 
        "givenName": "Youbao", 
        "id": "sg:person.011160055230.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011160055230.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Florida", 
          "id": "https://www.grid.ac/institutes/grid.15276.37", 
          "name": [
            "National Institutes of Health Clinical Center", 
            "University of Florida"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cai", 
        "givenName": "Jinzheng", 
        "id": "sg:person.015276612061.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015276612061.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "National Institutes of Health Clinical Center"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Le", 
        "id": "sg:person.01353423536.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353423536.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "National Institutes of Health Clinical Center"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Harrison", 
        "givenName": "Adam P.", 
        "id": "sg:person.015650075713.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015650075713.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "National Institutes of Health Clinical Center"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yan", 
        "givenName": "Ke", 
        "id": "sg:person.010154564704.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010154564704.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Ping An Insurance Company of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xiao", 
        "givenName": "Jing", 
        "id": "sg:person.016201005410.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016201005410.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Florida", 
          "id": "https://www.grid.ac/institutes/grid.15276.37", 
          "name": [
            "University of Florida"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Lin", 
        "id": "sg:person.01305044435.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305044435.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "National Institutes of Health Clinical Center"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Summers", 
        "givenName": "Ronald M.", 
        "id": "sg:person.011331054577.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331054577.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/1186562.1015720", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022236987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-008-0924-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039670897", 
          "https://doi.org/10.1007/s00330-008-0924-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-008-0924-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039670897", 
          "https://doi.org/10.1007/s00330-008-0924-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2017.2662206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083507470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2015.123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093828312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvprw.2017.150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094476634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2016.207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095089632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2009.5206848", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095689025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2017.19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095836438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-030-00934-2_81", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107025820", 
          "https://doi.org/10.1007/978-3-030-00934-2_81"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-030-00937-3_46", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107026755", 
          "https://doi.org/10.1007/978-3-030-00937-3_46"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-030-00919-9_29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107037353", 
          "https://doi.org/10.1007/978-3-030-00919-9_29"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018", 
    "datePublishedReg": "2018-01-01", 
    "description": "Automated lesion segmentation from computed tomography (CT) is an important and challenging task in medical image analysis. While many advancements have been made, there is room for continued improvements. One hurdle is that CT images can exhibit high noise and low contrast, particularly in lower dosages. To address this, we focus on a preprocessing method for CT images that uses stacked generative adversarial networks (SGAN) approach. The first GAN reduces the noise in the CT image and the second GAN generates a higher resolution image with enhanced boundaries and high contrast. To make up for the absence of high quality CT images, we detail how to synthesize a large number of low- and high-quality natural images and use transfer learning with progressively larger amounts of CT images. We apply both the classic GrabCut method and the modern holistically nested network (HNN) to lesion segmentation, testing whether SGAN can yield improved lesion segmentation. Experimental results on the DeepLesion dataset demonstrate that the SGAN enhancements alone can push GrabCut performance over HNN trained on original images. We also demonstrate that HNN + SGAN performs best compared against four other enhancement methods, including when using only a single GAN.", 
    "editor": [
      {
        "familyName": "Shi", 
        "givenName": "Yinghuan", 
        "type": "Person"
      }, 
      {
        "familyName": "Suk", 
        "givenName": "Heung-Il", 
        "type": "Person"
      }, 
      {
        "familyName": "Liu", 
        "givenName": "Mingxia", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-00919-9_6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-030-00918-2", 
        "978-3-030-00919-9"
      ], 
      "name": "Machine Learning in Medical Imaging", 
      "type": "Book"
    }, 
    "name": "CT Image Enhancement Using Stacked Generative Adversarial Networks and Transfer Learning for Lesion Segmentation Improvement", 
    "pagination": "46-54", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-00919-9_6"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1cf615a06bc13779751f567ad2a6a7a0c682856b9708ae5a79ca8a17f141bacc"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107037320"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-00919-9_6", 
      "https://app.dimensions.ai/details/publication/pub.1107037320"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T00:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000526.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-030-00919-9_6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-00919-9_6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-00919-9_6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-00919-9_6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-00919-9_6'


 

This table displays all metadata directly associated to this object as RDF triples.

167 TRIPLES      23 PREDICATES      38 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-00919-9_6 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N9651f80f981946e0a6dadbbdb90984d8
4 schema:citation sg:pub.10.1007/978-3-030-00919-9_29
5 sg:pub.10.1007/978-3-030-00934-2_81
6 sg:pub.10.1007/978-3-030-00937-3_46
7 sg:pub.10.1007/s00330-008-0924-y
8 https://doi.org/10.1109/cvpr.2009.5206848
9 https://doi.org/10.1109/cvpr.2016.207
10 https://doi.org/10.1109/cvpr.2017.19
11 https://doi.org/10.1109/cvprw.2017.150
12 https://doi.org/10.1109/iccv.2015.123
13 https://doi.org/10.1109/tip.2017.2662206
14 https://doi.org/10.1145/1186562.1015720
15 schema:datePublished 2018
16 schema:datePublishedReg 2018-01-01
17 schema:description Automated lesion segmentation from computed tomography (CT) is an important and challenging task in medical image analysis. While many advancements have been made, there is room for continued improvements. One hurdle is that CT images can exhibit high noise and low contrast, particularly in lower dosages. To address this, we focus on a preprocessing method for CT images that uses stacked generative adversarial networks (SGAN) approach. The first GAN reduces the noise in the CT image and the second GAN generates a higher resolution image with enhanced boundaries and high contrast. To make up for the absence of high quality CT images, we detail how to synthesize a large number of low- and high-quality natural images and use transfer learning with progressively larger amounts of CT images. We apply both the classic GrabCut method and the modern holistically nested network (HNN) to lesion segmentation, testing whether SGAN can yield improved lesion segmentation. Experimental results on the DeepLesion dataset demonstrate that the SGAN enhancements alone can push GrabCut performance over HNN trained on original images. We also demonstrate that HNN + SGAN performs best compared against four other enhancement methods, including when using only a single GAN.
18 schema:editor Nd097969b331b4a9bba64e81af1d15f7b
19 schema:genre chapter
20 schema:inLanguage en
21 schema:isAccessibleForFree true
22 schema:isPartOf N028a711b27494d59afa1a6893f66510a
23 schema:name CT Image Enhancement Using Stacked Generative Adversarial Networks and Transfer Learning for Lesion Segmentation Improvement
24 schema:pagination 46-54
25 schema:productId N4ee8dff71edd4aac96b05420d49f5fa6
26 N7698881d13ae422986d02caa452862d5
27 Nfd338377dc76446b95a074d7d777f904
28 schema:publisher N88615b3a1c7d473aafc10f02992fbefc
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107037320
30 https://doi.org/10.1007/978-3-030-00919-9_6
31 schema:sdDatePublished 2019-04-16T00:22
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher N329eec797bd94f18888a4d9a0a49b2b8
34 schema:url http://link.springer.com/10.1007/978-3-030-00919-9_6
35 sgo:license sg:explorer/license/
36 sgo:sdDataset chapters
37 rdf:type schema:Chapter
38 N028a711b27494d59afa1a6893f66510a schema:isbn 978-3-030-00918-2
39 978-3-030-00919-9
40 schema:name Machine Learning in Medical Imaging
41 rdf:type schema:Book
42 N0b0c746ed70a498da71b054b49186043 rdf:first N4e07b9bdf41041238d12f9792a5d74e5
43 rdf:rest N38a123cbc16d49218ab44ed896fd50b7
44 N329eec797bd94f18888a4d9a0a49b2b8 schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 N37b6e1345a394d02b926f494429c472b schema:familyName Liu
47 schema:givenName Mingxia
48 rdf:type schema:Person
49 N38a123cbc16d49218ab44ed896fd50b7 rdf:first N37b6e1345a394d02b926f494429c472b
50 rdf:rest rdf:nil
51 N46ef35198b1d47a49c376b89494a4b71 rdf:first sg:person.015276612061.48
52 rdf:rest Na2246bf4655a4f14a369fb8829037903
53 N4e07b9bdf41041238d12f9792a5d74e5 schema:familyName Suk
54 schema:givenName Heung-Il
55 rdf:type schema:Person
56 N4ee8dff71edd4aac96b05420d49f5fa6 schema:name readcube_id
57 schema:value 1cf615a06bc13779751f567ad2a6a7a0c682856b9708ae5a79ca8a17f141bacc
58 rdf:type schema:PropertyValue
59 N7698881d13ae422986d02caa452862d5 schema:name doi
60 schema:value 10.1007/978-3-030-00919-9_6
61 rdf:type schema:PropertyValue
62 N88615b3a1c7d473aafc10f02992fbefc schema:location Cham
63 schema:name Springer International Publishing
64 rdf:type schema:Organisation
65 N8bcc76ea219c44de9c3d7463e63e7e34 rdf:first sg:person.01305044435.92
66 rdf:rest Nc69970bd93d043dc84af8b30b9896cc8
67 N8c3e8fb1282640429a3656fa933ecc27 rdf:first sg:person.016201005410.92
68 rdf:rest N8bcc76ea219c44de9c3d7463e63e7e34
69 N9651f80f981946e0a6dadbbdb90984d8 rdf:first sg:person.011160055230.89
70 rdf:rest N46ef35198b1d47a49c376b89494a4b71
71 Na2246bf4655a4f14a369fb8829037903 rdf:first sg:person.01353423536.73
72 rdf:rest Nb0d65596803046638e8744083e047c21
73 Na369a6f1bf704b5ba5b6a19b42db31ec schema:name Ping An Insurance Company of China
74 rdf:type schema:Organization
75 Nb0d65596803046638e8744083e047c21 rdf:first sg:person.015650075713.17
76 rdf:rest Ncd81ed9f8f1a4c279ea35a071bacac7c
77 Nc69970bd93d043dc84af8b30b9896cc8 rdf:first sg:person.011331054577.30
78 rdf:rest rdf:nil
79 Ncd81ed9f8f1a4c279ea35a071bacac7c rdf:first sg:person.010154564704.79
80 rdf:rest N8c3e8fb1282640429a3656fa933ecc27
81 Nd097969b331b4a9bba64e81af1d15f7b rdf:first Nfa13995bce204e5a822d62d3adc917cc
82 rdf:rest N0b0c746ed70a498da71b054b49186043
83 Nfa13995bce204e5a822d62d3adc917cc schema:familyName Shi
84 schema:givenName Yinghuan
85 rdf:type schema:Person
86 Nfd338377dc76446b95a074d7d777f904 schema:name dimensions_id
87 schema:value pub.1107037320
88 rdf:type schema:PropertyValue
89 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
90 schema:name Information and Computing Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
93 schema:name Artificial Intelligence and Image Processing
94 rdf:type schema:DefinedTerm
95 sg:person.010154564704.79 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
96 schema:familyName Yan
97 schema:givenName Ke
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010154564704.79
99 rdf:type schema:Person
100 sg:person.011160055230.89 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
101 schema:familyName Tang
102 schema:givenName Youbao
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011160055230.89
104 rdf:type schema:Person
105 sg:person.011331054577.30 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
106 schema:familyName Summers
107 schema:givenName Ronald M.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331054577.30
109 rdf:type schema:Person
110 sg:person.01305044435.92 schema:affiliation https://www.grid.ac/institutes/grid.15276.37
111 schema:familyName Yang
112 schema:givenName Lin
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305044435.92
114 rdf:type schema:Person
115 sg:person.01353423536.73 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
116 schema:familyName Lu
117 schema:givenName Le
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353423536.73
119 rdf:type schema:Person
120 sg:person.015276612061.48 schema:affiliation https://www.grid.ac/institutes/grid.15276.37
121 schema:familyName Cai
122 schema:givenName Jinzheng
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015276612061.48
124 rdf:type schema:Person
125 sg:person.015650075713.17 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
126 schema:familyName Harrison
127 schema:givenName Adam P.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015650075713.17
129 rdf:type schema:Person
130 sg:person.016201005410.92 schema:affiliation Na369a6f1bf704b5ba5b6a19b42db31ec
131 schema:familyName Xiao
132 schema:givenName Jing
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016201005410.92
134 rdf:type schema:Person
135 sg:pub.10.1007/978-3-030-00919-9_29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107037353
136 https://doi.org/10.1007/978-3-030-00919-9_29
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/978-3-030-00934-2_81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107025820
139 https://doi.org/10.1007/978-3-030-00934-2_81
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/978-3-030-00937-3_46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107026755
142 https://doi.org/10.1007/978-3-030-00937-3_46
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s00330-008-0924-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1039670897
145 https://doi.org/10.1007/s00330-008-0924-y
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/cvpr.2009.5206848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095689025
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/cvpr.2016.207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095089632
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1109/cvpr.2017.19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095836438
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/cvprw.2017.150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094476634
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1109/iccv.2015.123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093828312
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1109/tip.2017.2662206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083507470
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1145/1186562.1015720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022236987
160 rdf:type schema:CreativeWork
161 https://www.grid.ac/institutes/grid.15276.37 schema:alternateName University of Florida
162 schema:name National Institutes of Health Clinical Center
163 University of Florida
164 rdf:type schema:Organization
165 https://www.grid.ac/institutes/grid.410305.3 schema:alternateName National Institutes of Health Clinical Center
166 schema:name National Institutes of Health Clinical Center
167 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...