That’s Interesting, Tell Me More! Finding Descriptive Support Passages for Knowledge Graph Relationships View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-09-18

AUTHORS

Sumit Bhatia , Purusharth Dwivedi , Avneet Kaur

ABSTRACT

We address the problem of finding descriptive explanations of facts stored in a knowledge graph. This is important in high-risk domains such as healthcare, intelligence, etc. where users need additional information for decision making and is especially crucial for applications that rely on automatically constructed knowledge graphs where machine-learned systems extract facts from an input corpus and working of the extractors is opaque to the end-user. We follow an approach inspired from information retrieval and propose a simple, yet effective and efficient solution that takes into account passage level as well as document level properties to produce a ranked list of passages describing a given input relation. We test our approach using Wikidata as the knowledge base and Wikipedia as the source corpus and report results of user studies conducted to study the effectiveness of our proposed model. More... »

PAGES

250-267

References to SciGraph publications

Book

TITLE

The Semantic Web – ISWC 2018

ISBN

978-3-030-00670-9
978-3-030-00671-6

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-00671-6_15

DOI

http://dx.doi.org/10.1007/978-3-030-00671-6_15

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107054125


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "IBM Research - India", 
          "id": "https://www.grid.ac/institutes/grid.481550.d", 
          "name": [
            "IBM Research AI, Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhatia", 
        "givenName": "Sumit", 
        "id": "sg:person.011072266527.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011072266527.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "IIIT Delhi, Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dwivedi", 
        "givenName": "Purusharth", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "IIIT Delhi, Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaur", 
        "givenName": "Avneet", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/2783258.2783325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001139633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/290941.290947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002001376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-25007-6_36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003038935", 
          "https://doi.org/10.1007/978-3-319-25007-6_36"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/h0031619", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004984215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4471-2099-5_31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007865004", 
          "https://doi.org/10.1007/978-1-4471-2099-5_31"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1376616.1376651", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012305232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1390334.1390407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017167046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2396761.2398702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017933982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-89704-0_34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019081685", 
          "https://doi.org/10.1007/978-3-540-89704-0_34"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-89704-0_34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019081685", 
          "https://doi.org/10.1007/978-3-540-89704-0_34"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2783258.2788609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019619762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-34129-3_47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021576402", 
          "https://doi.org/10.1007/978-3-319-34129-3_47"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-35176-1_20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021687228", 
          "https://doi.org/10.1007/978-3-642-35176-1_20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-13486-9_21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024958425", 
          "https://doi.org/10.1007/978-3-642-13486-9_21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-13486-9_21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024958425", 
          "https://doi.org/10.1007/978-3-642-13486-9_21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-47602-5_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026261340", 
          "https://doi.org/10.1007/978-3-319-47602-5_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4018/jdm.2005010103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029601154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ipm.2004.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030449859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-47602-5_17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030562906", 
          "https://doi.org/10.1007/978-3-319-47602-5_17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1645953.1646287", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032851708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/asi.20804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035063530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2746266.2746278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036579747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/eb046814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037275209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1835449.1835507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038529270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2094072.2094075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045857508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2063576.2063587", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047174113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14778/1920841.1921046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067367811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14778/2078331.2078339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067367921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-56608-5_25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084747066", 
          "https://doi.org/10.1007/978-3-319-56608-5_25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-46547-0_35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084843066", 
          "https://doi.org/10.1007/978-3-319-46547-0_35"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07421222.2003.11045749", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085537998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511809071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098672059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18653/v1/p16-2040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099113713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18653/v1/p16-2043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099113717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/v1/p15-1055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099115062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/v1/p15-1055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099115062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3209542.3209548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105383064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3209542.3209548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105383064"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-09-18", 
    "datePublishedReg": "2018-09-18", 
    "description": "We address the problem of finding descriptive explanations of facts stored in a knowledge graph. This is important in high-risk domains such as healthcare, intelligence, etc. where users need additional information for decision making and is especially crucial for applications that rely on automatically constructed knowledge graphs where machine-learned systems extract facts from an input corpus and working of the extractors is opaque to the end-user. We follow an approach inspired from information retrieval and propose a simple, yet effective and efficient solution that takes into account passage level as well as document level properties to produce a ranked list of passages describing a given input relation. We test our approach using Wikidata as the knowledge base and Wikipedia as the source corpus and report results of user studies conducted to study the effectiveness of our proposed model.", 
    "editor": [
      {
        "familyName": "Vrande\u010di\u0107", 
        "givenName": "Denny", 
        "type": "Person"
      }, 
      {
        "familyName": "Bontcheva", 
        "givenName": "Kalina", 
        "type": "Person"
      }, 
      {
        "familyName": "Su\u00e1rez-Figueroa", 
        "givenName": "Mari Carmen", 
        "type": "Person"
      }, 
      {
        "familyName": "Presutti", 
        "givenName": "Valentina", 
        "type": "Person"
      }, 
      {
        "familyName": "Celino", 
        "givenName": "Irene", 
        "type": "Person"
      }, 
      {
        "familyName": "Sabou", 
        "givenName": "Marta", 
        "type": "Person"
      }, 
      {
        "familyName": "Kaffee", 
        "givenName": "Lucie-Aim\u00e9e", 
        "type": "Person"
      }, 
      {
        "familyName": "Simperl", 
        "givenName": "Elena", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-00671-6_15", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-00670-9", 
        "978-3-030-00671-6"
      ], 
      "name": "The Semantic Web \u2013 ISWC 2018", 
      "type": "Book"
    }, 
    "name": "That\u2019s Interesting, Tell Me More! Finding Descriptive Support Passages for Knowledge Graph Relationships", 
    "pagination": "250-267", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-00671-6_15"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4b963d91d0f3ba35df6a0154f3c9156ddb63201ca31d18e071102e6fb5d416ba"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107054125"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-00671-6_15", 
      "https://app.dimensions.ai/details/publication/pub.1107054125"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T04:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000321_0000000321/records_74908_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-030-00671-6_15"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-00671-6_15'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-00671-6_15'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-00671-6_15'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-00671-6_15'


 

This table displays all metadata directly associated to this object as RDF triples.

228 TRIPLES      23 PREDICATES      60 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-00671-6_15 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nac8bb0f76655427cbb738bafed6b6d00
4 schema:citation sg:pub.10.1007/978-1-4471-2099-5_31
5 sg:pub.10.1007/978-3-319-25007-6_36
6 sg:pub.10.1007/978-3-319-34129-3_47
7 sg:pub.10.1007/978-3-319-46547-0_35
8 sg:pub.10.1007/978-3-319-47602-5_17
9 sg:pub.10.1007/978-3-319-47602-5_8
10 sg:pub.10.1007/978-3-319-56608-5_25
11 sg:pub.10.1007/978-3-540-89704-0_34
12 sg:pub.10.1007/978-3-642-13486-9_21
13 sg:pub.10.1007/978-3-642-35176-1_20
14 https://doi.org/10.1002/asi.20804
15 https://doi.org/10.1016/j.ipm.2004.05.001
16 https://doi.org/10.1017/cbo9780511809071
17 https://doi.org/10.1037/h0031619
18 https://doi.org/10.1080/07421222.2003.11045749
19 https://doi.org/10.1108/eb046814
20 https://doi.org/10.1145/1376616.1376651
21 https://doi.org/10.1145/1390334.1390407
22 https://doi.org/10.1145/1645953.1646287
23 https://doi.org/10.1145/1835449.1835507
24 https://doi.org/10.1145/2063576.2063587
25 https://doi.org/10.1145/2094072.2094075
26 https://doi.org/10.1145/2396761.2398702
27 https://doi.org/10.1145/2746266.2746278
28 https://doi.org/10.1145/2783258.2783325
29 https://doi.org/10.1145/2783258.2788609
30 https://doi.org/10.1145/290941.290947
31 https://doi.org/10.1145/3209542.3209548
32 https://doi.org/10.14778/1920841.1921046
33 https://doi.org/10.14778/2078331.2078339
34 https://doi.org/10.18653/v1/p16-2040
35 https://doi.org/10.18653/v1/p16-2043
36 https://doi.org/10.3115/v1/p15-1055
37 https://doi.org/10.4018/jdm.2005010103
38 schema:datePublished 2018-09-18
39 schema:datePublishedReg 2018-09-18
40 schema:description We address the problem of finding descriptive explanations of facts stored in a knowledge graph. This is important in high-risk domains such as healthcare, intelligence, etc. where users need additional information for decision making and is especially crucial for applications that rely on automatically constructed knowledge graphs where machine-learned systems extract facts from an input corpus and working of the extractors is opaque to the end-user. We follow an approach inspired from information retrieval and propose a simple, yet effective and efficient solution that takes into account passage level as well as document level properties to produce a ranked list of passages describing a given input relation. We test our approach using Wikidata as the knowledge base and Wikipedia as the source corpus and report results of user studies conducted to study the effectiveness of our proposed model.
41 schema:editor N13b2be32d5bc4ce5a337dbf271d09b53
42 schema:genre chapter
43 schema:inLanguage en
44 schema:isAccessibleForFree false
45 schema:isPartOf N76a846bb89ec4af6a4290b83ee7d889d
46 schema:name That’s Interesting, Tell Me More! Finding Descriptive Support Passages for Knowledge Graph Relationships
47 schema:pagination 250-267
48 schema:productId N130726e66dac4669996dc70fd44a467f
49 N2e82e103ac784a288534f887ec93cd3b
50 N5764bfa34fc64c028c949bed7a205dbd
51 schema:publisher Nf9bed36c02124c9b809fc2b22378395f
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107054125
53 https://doi.org/10.1007/978-3-030-00671-6_15
54 schema:sdDatePublished 2019-04-16T04:39
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N1c748c0d7e3f4df7990642d4612bd170
57 schema:url https://link.springer.com/10.1007%2F978-3-030-00671-6_15
58 sgo:license sg:explorer/license/
59 sgo:sdDataset chapters
60 rdf:type schema:Chapter
61 N0305ea14c6f04fc3913bdaf2f1f28705 schema:familyName Suárez-Figueroa
62 schema:givenName Mari Carmen
63 rdf:type schema:Person
64 N0c7267dd8ef042d09f509c46c7b47de4 rdf:first N8d3637bbaa4d423f991628b6abfdf3ce
65 rdf:rest rdf:nil
66 N130726e66dac4669996dc70fd44a467f schema:name readcube_id
67 schema:value 4b963d91d0f3ba35df6a0154f3c9156ddb63201ca31d18e071102e6fb5d416ba
68 rdf:type schema:PropertyValue
69 N132e2aa9e5754312bf8808b707f9f538 schema:familyName Bontcheva
70 schema:givenName Kalina
71 rdf:type schema:Person
72 N13b2be32d5bc4ce5a337dbf271d09b53 rdf:first N74d40a6696ad4d8e972b367ea0eb33cc
73 rdf:rest Nd31ed7302f6840db88958830959d7c42
74 N17855270dba74afda8c61f3b91bbf80c schema:affiliation Nefb01311fc2d47219829efb4c8d28021
75 schema:familyName Dwivedi
76 schema:givenName Purusharth
77 rdf:type schema:Person
78 N1c748c0d7e3f4df7990642d4612bd170 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 N271858a22b4545e6ae24f2279f000553 rdf:first N5670604b73224bd4b284a21128d65377
81 rdf:rest rdf:nil
82 N2e82e103ac784a288534f887ec93cd3b schema:name dimensions_id
83 schema:value pub.1107054125
84 rdf:type schema:PropertyValue
85 N3a3b7bd6d48b4f43885e10e73e5a1baa schema:familyName Sabou
86 schema:givenName Marta
87 rdf:type schema:Person
88 N4927c5fd9ed54598ab1faf718839fb01 rdf:first N6c2f19c3e74e49a991ce1908bb89280f
89 rdf:rest N66e32f48fca8470780a99f3ed5764aea
90 N5670604b73224bd4b284a21128d65377 schema:affiliation N99dbdf5edba545dba018ea9b10f13aef
91 schema:familyName Kaur
92 schema:givenName Avneet
93 rdf:type schema:Person
94 N5764bfa34fc64c028c949bed7a205dbd schema:name doi
95 schema:value 10.1007/978-3-030-00671-6_15
96 rdf:type schema:PropertyValue
97 N5a7b0394b2b2417fa4e6e87cf3b54134 rdf:first N17855270dba74afda8c61f3b91bbf80c
98 rdf:rest N271858a22b4545e6ae24f2279f000553
99 N66ba800f9383437387e8b8aaa81c80a7 rdf:first N930f7e06d8ba4463ad47fd10d786761e
100 rdf:rest N0c7267dd8ef042d09f509c46c7b47de4
101 N66e32f48fca8470780a99f3ed5764aea rdf:first N3a3b7bd6d48b4f43885e10e73e5a1baa
102 rdf:rest N66ba800f9383437387e8b8aaa81c80a7
103 N6c2f19c3e74e49a991ce1908bb89280f schema:familyName Celino
104 schema:givenName Irene
105 rdf:type schema:Person
106 N74d40a6696ad4d8e972b367ea0eb33cc schema:familyName Vrandečić
107 schema:givenName Denny
108 rdf:type schema:Person
109 N76a846bb89ec4af6a4290b83ee7d889d schema:isbn 978-3-030-00670-9
110 978-3-030-00671-6
111 schema:name The Semantic Web – ISWC 2018
112 rdf:type schema:Book
113 N8d3637bbaa4d423f991628b6abfdf3ce schema:familyName Simperl
114 schema:givenName Elena
115 rdf:type schema:Person
116 N930f7e06d8ba4463ad47fd10d786761e schema:familyName Kaffee
117 schema:givenName Lucie-Aimée
118 rdf:type schema:Person
119 N99dbdf5edba545dba018ea9b10f13aef schema:name IIIT Delhi, Delhi, India
120 rdf:type schema:Organization
121 Nac8bb0f76655427cbb738bafed6b6d00 rdf:first sg:person.011072266527.37
122 rdf:rest N5a7b0394b2b2417fa4e6e87cf3b54134
123 Nb75d25bc3fc4488ab1a230d137eeb9e5 rdf:first N0305ea14c6f04fc3913bdaf2f1f28705
124 rdf:rest Ndbcfcb468cc248d4a69256d380f180c3
125 Nbc11964d47c449df8acfad29321fc4f4 schema:familyName Presutti
126 schema:givenName Valentina
127 rdf:type schema:Person
128 Nd31ed7302f6840db88958830959d7c42 rdf:first N132e2aa9e5754312bf8808b707f9f538
129 rdf:rest Nb75d25bc3fc4488ab1a230d137eeb9e5
130 Ndbcfcb468cc248d4a69256d380f180c3 rdf:first Nbc11964d47c449df8acfad29321fc4f4
131 rdf:rest N4927c5fd9ed54598ab1faf718839fb01
132 Nefb01311fc2d47219829efb4c8d28021 schema:name IIIT Delhi, Delhi, India
133 rdf:type schema:Organization
134 Nf9bed36c02124c9b809fc2b22378395f schema:location Cham
135 schema:name Springer International Publishing
136 rdf:type schema:Organisation
137 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
138 schema:name Information and Computing Sciences
139 rdf:type schema:DefinedTerm
140 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
141 schema:name Artificial Intelligence and Image Processing
142 rdf:type schema:DefinedTerm
143 sg:person.011072266527.37 schema:affiliation https://www.grid.ac/institutes/grid.481550.d
144 schema:familyName Bhatia
145 schema:givenName Sumit
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011072266527.37
147 rdf:type schema:Person
148 sg:pub.10.1007/978-1-4471-2099-5_31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007865004
149 https://doi.org/10.1007/978-1-4471-2099-5_31
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/978-3-319-25007-6_36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003038935
152 https://doi.org/10.1007/978-3-319-25007-6_36
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/978-3-319-34129-3_47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021576402
155 https://doi.org/10.1007/978-3-319-34129-3_47
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/978-3-319-46547-0_35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084843066
158 https://doi.org/10.1007/978-3-319-46547-0_35
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/978-3-319-47602-5_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030562906
161 https://doi.org/10.1007/978-3-319-47602-5_17
162 rdf:type schema:CreativeWork
163 sg:pub.10.1007/978-3-319-47602-5_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026261340
164 https://doi.org/10.1007/978-3-319-47602-5_8
165 rdf:type schema:CreativeWork
166 sg:pub.10.1007/978-3-319-56608-5_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084747066
167 https://doi.org/10.1007/978-3-319-56608-5_25
168 rdf:type schema:CreativeWork
169 sg:pub.10.1007/978-3-540-89704-0_34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019081685
170 https://doi.org/10.1007/978-3-540-89704-0_34
171 rdf:type schema:CreativeWork
172 sg:pub.10.1007/978-3-642-13486-9_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024958425
173 https://doi.org/10.1007/978-3-642-13486-9_21
174 rdf:type schema:CreativeWork
175 sg:pub.10.1007/978-3-642-35176-1_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021687228
176 https://doi.org/10.1007/978-3-642-35176-1_20
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1002/asi.20804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035063530
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.ipm.2004.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030449859
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1017/cbo9780511809071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098672059
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1037/h0031619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004984215
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1080/07421222.2003.11045749 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085537998
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1108/eb046814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037275209
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1145/1376616.1376651 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012305232
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1145/1390334.1390407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017167046
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1145/1645953.1646287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032851708
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1145/1835449.1835507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038529270
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1145/2063576.2063587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047174113
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1145/2094072.2094075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045857508
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1145/2396761.2398702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017933982
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1145/2746266.2746278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036579747
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1145/2783258.2783325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001139633
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1145/2783258.2788609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019619762
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1145/290941.290947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002001376
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1145/3209542.3209548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105383064
213 rdf:type schema:CreativeWork
214 https://doi.org/10.14778/1920841.1921046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067367811
215 rdf:type schema:CreativeWork
216 https://doi.org/10.14778/2078331.2078339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067367921
217 rdf:type schema:CreativeWork
218 https://doi.org/10.18653/v1/p16-2040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099113713
219 rdf:type schema:CreativeWork
220 https://doi.org/10.18653/v1/p16-2043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099113717
221 rdf:type schema:CreativeWork
222 https://doi.org/10.3115/v1/p15-1055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099115062
223 rdf:type schema:CreativeWork
224 https://doi.org/10.4018/jdm.2005010103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029601154
225 rdf:type schema:CreativeWork
226 https://www.grid.ac/institutes/grid.481550.d schema:alternateName IBM Research - India
227 schema:name IBM Research AI, Delhi, India
228 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...