That’s Interesting, Tell Me More! Finding Descriptive Support Passages for Knowledge Graph Relationships View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-09-18

AUTHORS

Sumit Bhatia , Purusharth Dwivedi , Avneet Kaur

ABSTRACT

We address the problem of finding descriptive explanations of facts stored in a knowledge graph. This is important in high-risk domains such as healthcare, intelligence, etc. where users need additional information for decision making and is especially crucial for applications that rely on automatically constructed knowledge graphs where machine-learned systems extract facts from an input corpus and working of the extractors is opaque to the end-user. We follow an approach inspired from information retrieval and propose a simple, yet effective and efficient solution that takes into account passage level as well as document level properties to produce a ranked list of passages describing a given input relation. We test our approach using Wikidata as the knowledge base and Wikipedia as the source corpus and report results of user studies conducted to study the effectiveness of our proposed model. More... »

PAGES

250-267

References to SciGraph publications

Book

TITLE

The Semantic Web – ISWC 2018

ISBN

978-3-030-00670-9
978-3-030-00671-6

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-00671-6_15

DOI

http://dx.doi.org/10.1007/978-3-030-00671-6_15

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107054125


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "IBM Research - India", 
          "id": "https://www.grid.ac/institutes/grid.481550.d", 
          "name": [
            "IBM Research AI, Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhatia", 
        "givenName": "Sumit", 
        "id": "sg:person.011072266527.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011072266527.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "IIIT Delhi, Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dwivedi", 
        "givenName": "Purusharth", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "IIIT Delhi, Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaur", 
        "givenName": "Avneet", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/2783258.2783325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001139633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/290941.290947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002001376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-25007-6_36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003038935", 
          "https://doi.org/10.1007/978-3-319-25007-6_36"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/h0031619", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004984215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4471-2099-5_31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007865004", 
          "https://doi.org/10.1007/978-1-4471-2099-5_31"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1376616.1376651", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012305232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1390334.1390407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017167046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2396761.2398702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017933982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-89704-0_34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019081685", 
          "https://doi.org/10.1007/978-3-540-89704-0_34"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-89704-0_34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019081685", 
          "https://doi.org/10.1007/978-3-540-89704-0_34"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2783258.2788609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019619762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-34129-3_47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021576402", 
          "https://doi.org/10.1007/978-3-319-34129-3_47"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-35176-1_20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021687228", 
          "https://doi.org/10.1007/978-3-642-35176-1_20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-13486-9_21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024958425", 
          "https://doi.org/10.1007/978-3-642-13486-9_21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-13486-9_21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024958425", 
          "https://doi.org/10.1007/978-3-642-13486-9_21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-47602-5_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026261340", 
          "https://doi.org/10.1007/978-3-319-47602-5_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4018/jdm.2005010103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029601154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ipm.2004.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030449859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-47602-5_17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030562906", 
          "https://doi.org/10.1007/978-3-319-47602-5_17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1645953.1646287", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032851708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/asi.20804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035063530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2746266.2746278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036579747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/eb046814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037275209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1835449.1835507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038529270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2094072.2094075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045857508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2063576.2063587", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047174113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14778/1920841.1921046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067367811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14778/2078331.2078339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067367921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-56608-5_25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084747066", 
          "https://doi.org/10.1007/978-3-319-56608-5_25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-46547-0_35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084843066", 
          "https://doi.org/10.1007/978-3-319-46547-0_35"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07421222.2003.11045749", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085537998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511809071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098672059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18653/v1/p16-2040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099113713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18653/v1/p16-2043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099113717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/v1/p15-1055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099115062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/v1/p15-1055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099115062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3209542.3209548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105383064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3209542.3209548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105383064"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-09-18", 
    "datePublishedReg": "2018-09-18", 
    "description": "We address the problem of finding descriptive explanations of facts stored in a knowledge graph. This is important in high-risk domains such as healthcare, intelligence, etc. where users need additional information for decision making and is especially crucial for applications that rely on automatically constructed knowledge graphs where machine-learned systems extract facts from an input corpus and working of the extractors is opaque to the end-user. We follow an approach inspired from information retrieval and propose a simple, yet effective and efficient solution that takes into account passage level as well as document level properties to produce a ranked list of passages describing a given input relation. We test our approach using Wikidata as the knowledge base and Wikipedia as the source corpus and report results of user studies conducted to study the effectiveness of our proposed model.", 
    "editor": [
      {
        "familyName": "Vrande\u010di\u0107", 
        "givenName": "Denny", 
        "type": "Person"
      }, 
      {
        "familyName": "Bontcheva", 
        "givenName": "Kalina", 
        "type": "Person"
      }, 
      {
        "familyName": "Su\u00e1rez-Figueroa", 
        "givenName": "Mari Carmen", 
        "type": "Person"
      }, 
      {
        "familyName": "Presutti", 
        "givenName": "Valentina", 
        "type": "Person"
      }, 
      {
        "familyName": "Celino", 
        "givenName": "Irene", 
        "type": "Person"
      }, 
      {
        "familyName": "Sabou", 
        "givenName": "Marta", 
        "type": "Person"
      }, 
      {
        "familyName": "Kaffee", 
        "givenName": "Lucie-Aim\u00e9e", 
        "type": "Person"
      }, 
      {
        "familyName": "Simperl", 
        "givenName": "Elena", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-00671-6_15", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-00670-9", 
        "978-3-030-00671-6"
      ], 
      "name": "The Semantic Web \u2013 ISWC 2018", 
      "type": "Book"
    }, 
    "name": "That\u2019s Interesting, Tell Me More! Finding Descriptive Support Passages for Knowledge Graph Relationships", 
    "pagination": "250-267", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-00671-6_15"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4b963d91d0f3ba35df6a0154f3c9156ddb63201ca31d18e071102e6fb5d416ba"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107054125"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-00671-6_15", 
      "https://app.dimensions.ai/details/publication/pub.1107054125"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T04:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000321_0000000321/records_74908_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-030-00671-6_15"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-00671-6_15'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-00671-6_15'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-00671-6_15'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-00671-6_15'


 

This table displays all metadata directly associated to this object as RDF triples.

228 TRIPLES      23 PREDICATES      60 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-00671-6_15 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N1b3e24daf8e245b1b4f4aae1b6373d7f
4 schema:citation sg:pub.10.1007/978-1-4471-2099-5_31
5 sg:pub.10.1007/978-3-319-25007-6_36
6 sg:pub.10.1007/978-3-319-34129-3_47
7 sg:pub.10.1007/978-3-319-46547-0_35
8 sg:pub.10.1007/978-3-319-47602-5_17
9 sg:pub.10.1007/978-3-319-47602-5_8
10 sg:pub.10.1007/978-3-319-56608-5_25
11 sg:pub.10.1007/978-3-540-89704-0_34
12 sg:pub.10.1007/978-3-642-13486-9_21
13 sg:pub.10.1007/978-3-642-35176-1_20
14 https://doi.org/10.1002/asi.20804
15 https://doi.org/10.1016/j.ipm.2004.05.001
16 https://doi.org/10.1017/cbo9780511809071
17 https://doi.org/10.1037/h0031619
18 https://doi.org/10.1080/07421222.2003.11045749
19 https://doi.org/10.1108/eb046814
20 https://doi.org/10.1145/1376616.1376651
21 https://doi.org/10.1145/1390334.1390407
22 https://doi.org/10.1145/1645953.1646287
23 https://doi.org/10.1145/1835449.1835507
24 https://doi.org/10.1145/2063576.2063587
25 https://doi.org/10.1145/2094072.2094075
26 https://doi.org/10.1145/2396761.2398702
27 https://doi.org/10.1145/2746266.2746278
28 https://doi.org/10.1145/2783258.2783325
29 https://doi.org/10.1145/2783258.2788609
30 https://doi.org/10.1145/290941.290947
31 https://doi.org/10.1145/3209542.3209548
32 https://doi.org/10.14778/1920841.1921046
33 https://doi.org/10.14778/2078331.2078339
34 https://doi.org/10.18653/v1/p16-2040
35 https://doi.org/10.18653/v1/p16-2043
36 https://doi.org/10.3115/v1/p15-1055
37 https://doi.org/10.4018/jdm.2005010103
38 schema:datePublished 2018-09-18
39 schema:datePublishedReg 2018-09-18
40 schema:description We address the problem of finding descriptive explanations of facts stored in a knowledge graph. This is important in high-risk domains such as healthcare, intelligence, etc. where users need additional information for decision making and is especially crucial for applications that rely on automatically constructed knowledge graphs where machine-learned systems extract facts from an input corpus and working of the extractors is opaque to the end-user. We follow an approach inspired from information retrieval and propose a simple, yet effective and efficient solution that takes into account passage level as well as document level properties to produce a ranked list of passages describing a given input relation. We test our approach using Wikidata as the knowledge base and Wikipedia as the source corpus and report results of user studies conducted to study the effectiveness of our proposed model.
41 schema:editor N976806bfbfb14551852018047672f6a7
42 schema:genre chapter
43 schema:inLanguage en
44 schema:isAccessibleForFree false
45 schema:isPartOf Nd62223c82ba844ff8ad01806d3d6adfb
46 schema:name That’s Interesting, Tell Me More! Finding Descriptive Support Passages for Knowledge Graph Relationships
47 schema:pagination 250-267
48 schema:productId N2a0efcd4a672412ead42f34a6b2bfe56
49 Na3ccc91dc3124432ac84b8507f4ef18e
50 Nf61eb951f88b4cc3909d283569ca44dc
51 schema:publisher Na005f92c3679418abb74c7e7d0864846
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107054125
53 https://doi.org/10.1007/978-3-030-00671-6_15
54 schema:sdDatePublished 2019-04-16T04:39
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher Nba70683446b84b418e3c0b67b72aafc7
57 schema:url https://link.springer.com/10.1007%2F978-3-030-00671-6_15
58 sgo:license sg:explorer/license/
59 sgo:sdDataset chapters
60 rdf:type schema:Chapter
61 N1b3e24daf8e245b1b4f4aae1b6373d7f rdf:first sg:person.011072266527.37
62 rdf:rest Nc9856dd829934f41b939f0478eaf9d8a
63 N1c05aa8fc3af40c7a590e80ec76cf87f rdf:first Nffbaf1ef474644e3819a1c8c6d048e0a
64 rdf:rest N66b98101d18646e0a9fc538a582704dd
65 N2181baac05154485ad10f930e26a383c schema:familyName Celino
66 schema:givenName Irene
67 rdf:type schema:Person
68 N2a0efcd4a672412ead42f34a6b2bfe56 schema:name readcube_id
69 schema:value 4b963d91d0f3ba35df6a0154f3c9156ddb63201ca31d18e071102e6fb5d416ba
70 rdf:type schema:PropertyValue
71 N3a4f1141af254a0fa2f6a43d0143932a rdf:first N3fada10a05814cdd8372a8f6ec225644
72 rdf:rest N1c05aa8fc3af40c7a590e80ec76cf87f
73 N3e183ef39818440c804ef4a4c778b4d3 schema:familyName Presutti
74 schema:givenName Valentina
75 rdf:type schema:Person
76 N3fada10a05814cdd8372a8f6ec225644 schema:familyName Sabou
77 schema:givenName Marta
78 rdf:type schema:Person
79 N46ad9d1f74ba4b07a306aac2d2a4b45b schema:affiliation Ne29207d6364f4a25bf9ba12baa1355b7
80 schema:familyName Dwivedi
81 schema:givenName Purusharth
82 rdf:type schema:Person
83 N4fb6ea562a764de3b85786f8fd6d69d6 schema:familyName Bontcheva
84 schema:givenName Kalina
85 rdf:type schema:Person
86 N5c70ce7839ce4d8498cd7b1af6d53f72 schema:familyName Vrandečić
87 schema:givenName Denny
88 rdf:type schema:Person
89 N5e6cac4afa204588a5bf1334476285df rdf:first N2181baac05154485ad10f930e26a383c
90 rdf:rest N3a4f1141af254a0fa2f6a43d0143932a
91 N66b98101d18646e0a9fc538a582704dd rdf:first Ne9cf20e1c05e45d3a13f32f5fe32cffc
92 rdf:rest rdf:nil
93 N76c4149520d44fbdbbb187f481b1ba19 schema:name IIIT Delhi, Delhi, India
94 rdf:type schema:Organization
95 N94b89e05d28342d1aedcac5b778fc9b5 schema:familyName Suárez-Figueroa
96 schema:givenName Mari Carmen
97 rdf:type schema:Person
98 N976806bfbfb14551852018047672f6a7 rdf:first N5c70ce7839ce4d8498cd7b1af6d53f72
99 rdf:rest Neb13fed20bd7421f861413e56dca8454
100 Na005f92c3679418abb74c7e7d0864846 schema:location Cham
101 schema:name Springer International Publishing
102 rdf:type schema:Organisation
103 Na3ccc91dc3124432ac84b8507f4ef18e schema:name dimensions_id
104 schema:value pub.1107054125
105 rdf:type schema:PropertyValue
106 Nb157949dd0ee415fbc7766b0ab229c58 rdf:first Nc2b527aa5dac4d7ba233694c0aa926cc
107 rdf:rest rdf:nil
108 Nb522e06f0fea4612832ca763e5106d41 rdf:first N94b89e05d28342d1aedcac5b778fc9b5
109 rdf:rest Nec24fe8b31e14334a24cadbc349ee003
110 Nba70683446b84b418e3c0b67b72aafc7 schema:name Springer Nature - SN SciGraph project
111 rdf:type schema:Organization
112 Nc2b527aa5dac4d7ba233694c0aa926cc schema:affiliation N76c4149520d44fbdbbb187f481b1ba19
113 schema:familyName Kaur
114 schema:givenName Avneet
115 rdf:type schema:Person
116 Nc9856dd829934f41b939f0478eaf9d8a rdf:first N46ad9d1f74ba4b07a306aac2d2a4b45b
117 rdf:rest Nb157949dd0ee415fbc7766b0ab229c58
118 Nd62223c82ba844ff8ad01806d3d6adfb schema:isbn 978-3-030-00670-9
119 978-3-030-00671-6
120 schema:name The Semantic Web – ISWC 2018
121 rdf:type schema:Book
122 Ne29207d6364f4a25bf9ba12baa1355b7 schema:name IIIT Delhi, Delhi, India
123 rdf:type schema:Organization
124 Ne9cf20e1c05e45d3a13f32f5fe32cffc schema:familyName Simperl
125 schema:givenName Elena
126 rdf:type schema:Person
127 Neb13fed20bd7421f861413e56dca8454 rdf:first N4fb6ea562a764de3b85786f8fd6d69d6
128 rdf:rest Nb522e06f0fea4612832ca763e5106d41
129 Nec24fe8b31e14334a24cadbc349ee003 rdf:first N3e183ef39818440c804ef4a4c778b4d3
130 rdf:rest N5e6cac4afa204588a5bf1334476285df
131 Nf61eb951f88b4cc3909d283569ca44dc schema:name doi
132 schema:value 10.1007/978-3-030-00671-6_15
133 rdf:type schema:PropertyValue
134 Nffbaf1ef474644e3819a1c8c6d048e0a schema:familyName Kaffee
135 schema:givenName Lucie-Aimée
136 rdf:type schema:Person
137 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
138 schema:name Information and Computing Sciences
139 rdf:type schema:DefinedTerm
140 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
141 schema:name Artificial Intelligence and Image Processing
142 rdf:type schema:DefinedTerm
143 sg:person.011072266527.37 schema:affiliation https://www.grid.ac/institutes/grid.481550.d
144 schema:familyName Bhatia
145 schema:givenName Sumit
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011072266527.37
147 rdf:type schema:Person
148 sg:pub.10.1007/978-1-4471-2099-5_31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007865004
149 https://doi.org/10.1007/978-1-4471-2099-5_31
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/978-3-319-25007-6_36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003038935
152 https://doi.org/10.1007/978-3-319-25007-6_36
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/978-3-319-34129-3_47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021576402
155 https://doi.org/10.1007/978-3-319-34129-3_47
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/978-3-319-46547-0_35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084843066
158 https://doi.org/10.1007/978-3-319-46547-0_35
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/978-3-319-47602-5_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030562906
161 https://doi.org/10.1007/978-3-319-47602-5_17
162 rdf:type schema:CreativeWork
163 sg:pub.10.1007/978-3-319-47602-5_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026261340
164 https://doi.org/10.1007/978-3-319-47602-5_8
165 rdf:type schema:CreativeWork
166 sg:pub.10.1007/978-3-319-56608-5_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084747066
167 https://doi.org/10.1007/978-3-319-56608-5_25
168 rdf:type schema:CreativeWork
169 sg:pub.10.1007/978-3-540-89704-0_34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019081685
170 https://doi.org/10.1007/978-3-540-89704-0_34
171 rdf:type schema:CreativeWork
172 sg:pub.10.1007/978-3-642-13486-9_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024958425
173 https://doi.org/10.1007/978-3-642-13486-9_21
174 rdf:type schema:CreativeWork
175 sg:pub.10.1007/978-3-642-35176-1_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021687228
176 https://doi.org/10.1007/978-3-642-35176-1_20
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1002/asi.20804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035063530
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.ipm.2004.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030449859
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1017/cbo9780511809071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098672059
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1037/h0031619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004984215
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1080/07421222.2003.11045749 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085537998
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1108/eb046814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037275209
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1145/1376616.1376651 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012305232
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1145/1390334.1390407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017167046
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1145/1645953.1646287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032851708
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1145/1835449.1835507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038529270
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1145/2063576.2063587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047174113
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1145/2094072.2094075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045857508
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1145/2396761.2398702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017933982
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1145/2746266.2746278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036579747
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1145/2783258.2783325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001139633
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1145/2783258.2788609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019619762
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1145/290941.290947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002001376
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1145/3209542.3209548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105383064
213 rdf:type schema:CreativeWork
214 https://doi.org/10.14778/1920841.1921046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067367811
215 rdf:type schema:CreativeWork
216 https://doi.org/10.14778/2078331.2078339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067367921
217 rdf:type schema:CreativeWork
218 https://doi.org/10.18653/v1/p16-2040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099113713
219 rdf:type schema:CreativeWork
220 https://doi.org/10.18653/v1/p16-2043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099113717
221 rdf:type schema:CreativeWork
222 https://doi.org/10.3115/v1/p15-1055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099115062
223 rdf:type schema:CreativeWork
224 https://doi.org/10.4018/jdm.2005010103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029601154
225 rdf:type schema:CreativeWork
226 https://www.grid.ac/institutes/grid.481550.d schema:alternateName IBM Research - India
227 schema:name IBM Research AI, Delhi, India
228 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...