That’s Interesting, Tell Me More! Finding Descriptive Support Passages for Knowledge Graph Relationships View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-09-18

AUTHORS

Sumit Bhatia , Purusharth Dwivedi , Avneet Kaur

ABSTRACT

We address the problem of finding descriptive explanations of facts stored in a knowledge graph. This is important in high-risk domains such as healthcare, intelligence, etc. where users need additional information for decision making and is especially crucial for applications that rely on automatically constructed knowledge graphs where machine-learned systems extract facts from an input corpus and working of the extractors is opaque to the end-user. We follow an approach inspired from information retrieval and propose a simple, yet effective and efficient solution that takes into account passage level as well as document level properties to produce a ranked list of passages describing a given input relation. We test our approach using Wikidata as the knowledge base and Wikipedia as the source corpus and report results of user studies conducted to study the effectiveness of our proposed model. More... »

PAGES

250-267

References to SciGraph publications

Book

TITLE

The Semantic Web – ISWC 2018

ISBN

978-3-030-00670-9
978-3-030-00671-6

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-00671-6_15

DOI

http://dx.doi.org/10.1007/978-3-030-00671-6_15

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107054125


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "IBM Research - India", 
          "id": "https://www.grid.ac/institutes/grid.481550.d", 
          "name": [
            "IBM Research AI, Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhatia", 
        "givenName": "Sumit", 
        "id": "sg:person.011072266527.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011072266527.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "IIIT Delhi, Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dwivedi", 
        "givenName": "Purusharth", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "IIIT Delhi, Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaur", 
        "givenName": "Avneet", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/2783258.2783325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001139633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/290941.290947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002001376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-25007-6_36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003038935", 
          "https://doi.org/10.1007/978-3-319-25007-6_36"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/h0031619", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004984215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4471-2099-5_31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007865004", 
          "https://doi.org/10.1007/978-1-4471-2099-5_31"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1376616.1376651", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012305232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1390334.1390407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017167046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2396761.2398702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017933982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-89704-0_34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019081685", 
          "https://doi.org/10.1007/978-3-540-89704-0_34"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-89704-0_34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019081685", 
          "https://doi.org/10.1007/978-3-540-89704-0_34"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2783258.2788609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019619762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-34129-3_47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021576402", 
          "https://doi.org/10.1007/978-3-319-34129-3_47"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-35176-1_20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021687228", 
          "https://doi.org/10.1007/978-3-642-35176-1_20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-13486-9_21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024958425", 
          "https://doi.org/10.1007/978-3-642-13486-9_21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-13486-9_21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024958425", 
          "https://doi.org/10.1007/978-3-642-13486-9_21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-47602-5_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026261340", 
          "https://doi.org/10.1007/978-3-319-47602-5_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4018/jdm.2005010103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029601154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ipm.2004.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030449859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-47602-5_17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030562906", 
          "https://doi.org/10.1007/978-3-319-47602-5_17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1645953.1646287", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032851708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/asi.20804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035063530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2746266.2746278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036579747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/eb046814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037275209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1835449.1835507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038529270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2094072.2094075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045857508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2063576.2063587", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047174113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14778/1920841.1921046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067367811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14778/2078331.2078339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067367921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-56608-5_25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084747066", 
          "https://doi.org/10.1007/978-3-319-56608-5_25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-46547-0_35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084843066", 
          "https://doi.org/10.1007/978-3-319-46547-0_35"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07421222.2003.11045749", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085537998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511809071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098672059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18653/v1/p16-2040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099113713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18653/v1/p16-2043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099113717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/v1/p15-1055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099115062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/v1/p15-1055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099115062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3209542.3209548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105383064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3209542.3209548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105383064"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-09-18", 
    "datePublishedReg": "2018-09-18", 
    "description": "We address the problem of finding descriptive explanations of facts stored in a knowledge graph. This is important in high-risk domains such as healthcare, intelligence, etc. where users need additional information for decision making and is especially crucial for applications that rely on automatically constructed knowledge graphs where machine-learned systems extract facts from an input corpus and working of the extractors is opaque to the end-user. We follow an approach inspired from information retrieval and propose a simple, yet effective and efficient solution that takes into account passage level as well as document level properties to produce a ranked list of passages describing a given input relation. We test our approach using Wikidata as the knowledge base and Wikipedia as the source corpus and report results of user studies conducted to study the effectiveness of our proposed model.", 
    "editor": [
      {
        "familyName": "Vrande\u010di\u0107", 
        "givenName": "Denny", 
        "type": "Person"
      }, 
      {
        "familyName": "Bontcheva", 
        "givenName": "Kalina", 
        "type": "Person"
      }, 
      {
        "familyName": "Su\u00e1rez-Figueroa", 
        "givenName": "Mari Carmen", 
        "type": "Person"
      }, 
      {
        "familyName": "Presutti", 
        "givenName": "Valentina", 
        "type": "Person"
      }, 
      {
        "familyName": "Celino", 
        "givenName": "Irene", 
        "type": "Person"
      }, 
      {
        "familyName": "Sabou", 
        "givenName": "Marta", 
        "type": "Person"
      }, 
      {
        "familyName": "Kaffee", 
        "givenName": "Lucie-Aim\u00e9e", 
        "type": "Person"
      }, 
      {
        "familyName": "Simperl", 
        "givenName": "Elena", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-00671-6_15", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-00670-9", 
        "978-3-030-00671-6"
      ], 
      "name": "The Semantic Web \u2013 ISWC 2018", 
      "type": "Book"
    }, 
    "name": "That\u2019s Interesting, Tell Me More! Finding Descriptive Support Passages for Knowledge Graph Relationships", 
    "pagination": "250-267", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-00671-6_15"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4b963d91d0f3ba35df6a0154f3c9156ddb63201ca31d18e071102e6fb5d416ba"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107054125"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-00671-6_15", 
      "https://app.dimensions.ai/details/publication/pub.1107054125"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T04:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000321_0000000321/records_74908_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-030-00671-6_15"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-00671-6_15'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-00671-6_15'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-00671-6_15'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-00671-6_15'


 

This table displays all metadata directly associated to this object as RDF triples.

228 TRIPLES      23 PREDICATES      60 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-00671-6_15 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N68a182433a6c4120b4ab7303159a7b20
4 schema:citation sg:pub.10.1007/978-1-4471-2099-5_31
5 sg:pub.10.1007/978-3-319-25007-6_36
6 sg:pub.10.1007/978-3-319-34129-3_47
7 sg:pub.10.1007/978-3-319-46547-0_35
8 sg:pub.10.1007/978-3-319-47602-5_17
9 sg:pub.10.1007/978-3-319-47602-5_8
10 sg:pub.10.1007/978-3-319-56608-5_25
11 sg:pub.10.1007/978-3-540-89704-0_34
12 sg:pub.10.1007/978-3-642-13486-9_21
13 sg:pub.10.1007/978-3-642-35176-1_20
14 https://doi.org/10.1002/asi.20804
15 https://doi.org/10.1016/j.ipm.2004.05.001
16 https://doi.org/10.1017/cbo9780511809071
17 https://doi.org/10.1037/h0031619
18 https://doi.org/10.1080/07421222.2003.11045749
19 https://doi.org/10.1108/eb046814
20 https://doi.org/10.1145/1376616.1376651
21 https://doi.org/10.1145/1390334.1390407
22 https://doi.org/10.1145/1645953.1646287
23 https://doi.org/10.1145/1835449.1835507
24 https://doi.org/10.1145/2063576.2063587
25 https://doi.org/10.1145/2094072.2094075
26 https://doi.org/10.1145/2396761.2398702
27 https://doi.org/10.1145/2746266.2746278
28 https://doi.org/10.1145/2783258.2783325
29 https://doi.org/10.1145/2783258.2788609
30 https://doi.org/10.1145/290941.290947
31 https://doi.org/10.1145/3209542.3209548
32 https://doi.org/10.14778/1920841.1921046
33 https://doi.org/10.14778/2078331.2078339
34 https://doi.org/10.18653/v1/p16-2040
35 https://doi.org/10.18653/v1/p16-2043
36 https://doi.org/10.3115/v1/p15-1055
37 https://doi.org/10.4018/jdm.2005010103
38 schema:datePublished 2018-09-18
39 schema:datePublishedReg 2018-09-18
40 schema:description We address the problem of finding descriptive explanations of facts stored in a knowledge graph. This is important in high-risk domains such as healthcare, intelligence, etc. where users need additional information for decision making and is especially crucial for applications that rely on automatically constructed knowledge graphs where machine-learned systems extract facts from an input corpus and working of the extractors is opaque to the end-user. We follow an approach inspired from information retrieval and propose a simple, yet effective and efficient solution that takes into account passage level as well as document level properties to produce a ranked list of passages describing a given input relation. We test our approach using Wikidata as the knowledge base and Wikipedia as the source corpus and report results of user studies conducted to study the effectiveness of our proposed model.
41 schema:editor N24cc746213f74dcab06738407e51706f
42 schema:genre chapter
43 schema:inLanguage en
44 schema:isAccessibleForFree false
45 schema:isPartOf N10ba471431794ddb8dd0fdcf23ef2906
46 schema:name That’s Interesting, Tell Me More! Finding Descriptive Support Passages for Knowledge Graph Relationships
47 schema:pagination 250-267
48 schema:productId N01dc1da2c3ea4c748c50d21e538113a9
49 N4336a54c0a354efea4c89e09918b1bf1
50 Nfdd02fcb0448475b8414a0446b618c50
51 schema:publisher N4cc60cabdf54485cb72428863f4d1d0f
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107054125
53 https://doi.org/10.1007/978-3-030-00671-6_15
54 schema:sdDatePublished 2019-04-16T04:39
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher Na16350dcf92e48be8f63ffa05918c543
57 schema:url https://link.springer.com/10.1007%2F978-3-030-00671-6_15
58 sgo:license sg:explorer/license/
59 sgo:sdDataset chapters
60 rdf:type schema:Chapter
61 N01dc1da2c3ea4c748c50d21e538113a9 schema:name doi
62 schema:value 10.1007/978-3-030-00671-6_15
63 rdf:type schema:PropertyValue
64 N10ba471431794ddb8dd0fdcf23ef2906 schema:isbn 978-3-030-00670-9
65 978-3-030-00671-6
66 schema:name The Semantic Web – ISWC 2018
67 rdf:type schema:Book
68 N1810d496e5b945e3bdcfcd9aef4ec6ea schema:affiliation N1cf39840c8dd42e99714a3c24fff641f
69 schema:familyName Dwivedi
70 schema:givenName Purusharth
71 rdf:type schema:Person
72 N1cf39840c8dd42e99714a3c24fff641f schema:name IIIT Delhi, Delhi, India
73 rdf:type schema:Organization
74 N24cc746213f74dcab06738407e51706f rdf:first Nff27e10308404f5cb029074f49e7036c
75 rdf:rest N85ae51a769924790bdd612c2872d7473
76 N4336a54c0a354efea4c89e09918b1bf1 schema:name readcube_id
77 schema:value 4b963d91d0f3ba35df6a0154f3c9156ddb63201ca31d18e071102e6fb5d416ba
78 rdf:type schema:PropertyValue
79 N4b3b39f441ed42079604401215508d49 schema:familyName Sabou
80 schema:givenName Marta
81 rdf:type schema:Person
82 N4cc60cabdf54485cb72428863f4d1d0f schema:location Cham
83 schema:name Springer International Publishing
84 rdf:type schema:Organisation
85 N4d7789f5109e42f1a03a998a9e6a7ed9 rdf:first Nf217cad99a4649b79791c574dcb1145f
86 rdf:rest Nf0c4c9e5c49d4fb8841410e932d9a978
87 N5a3317a8f3c54114b9840671eb8e5eae rdf:first N5b3a50bce49c4e499793d5185cf45071
88 rdf:rest rdf:nil
89 N5ab2e2c91583496cbe64e0bf1152c6f6 rdf:first N4b3b39f441ed42079604401215508d49
90 rdf:rest Nb30d07cfe1e643b1b9d0321bed9d2541
91 N5b3a50bce49c4e499793d5185cf45071 schema:familyName Simperl
92 schema:givenName Elena
93 rdf:type schema:Person
94 N68a182433a6c4120b4ab7303159a7b20 rdf:first sg:person.011072266527.37
95 rdf:rest Nbbf34b160ba64d9eb2dc8f15fdf61142
96 N7b687124f3c441c19e8520f6b585f51d schema:familyName Celino
97 schema:givenName Irene
98 rdf:type schema:Person
99 N85ae51a769924790bdd612c2872d7473 rdf:first Nf39060990eb24aaeb8598d4fbf0a1259
100 rdf:rest Na8c20e8df39e45c78693ae95df3a6359
101 Na0f4fdd72c404a03a6ee29ec1f73bac4 rdf:first Ne9efcdd60f5143b394fd3c897c1ae679
102 rdf:rest rdf:nil
103 Na16350dcf92e48be8f63ffa05918c543 schema:name Springer Nature - SN SciGraph project
104 rdf:type schema:Organization
105 Na66ef53a2f29407886e85cc7a6183a6e schema:familyName Kaffee
106 schema:givenName Lucie-Aimée
107 rdf:type schema:Person
108 Na8c20e8df39e45c78693ae95df3a6359 rdf:first Nb72de3bb9bbb4e25b6920b365277cee2
109 rdf:rest N4d7789f5109e42f1a03a998a9e6a7ed9
110 Nb30d07cfe1e643b1b9d0321bed9d2541 rdf:first Na66ef53a2f29407886e85cc7a6183a6e
111 rdf:rest N5a3317a8f3c54114b9840671eb8e5eae
112 Nb72de3bb9bbb4e25b6920b365277cee2 schema:familyName Suárez-Figueroa
113 schema:givenName Mari Carmen
114 rdf:type schema:Person
115 Nbbf34b160ba64d9eb2dc8f15fdf61142 rdf:first N1810d496e5b945e3bdcfcd9aef4ec6ea
116 rdf:rest Na0f4fdd72c404a03a6ee29ec1f73bac4
117 Nc98b2e876e6a483e827731237db0d168 schema:name IIIT Delhi, Delhi, India
118 rdf:type schema:Organization
119 Ne9efcdd60f5143b394fd3c897c1ae679 schema:affiliation Nc98b2e876e6a483e827731237db0d168
120 schema:familyName Kaur
121 schema:givenName Avneet
122 rdf:type schema:Person
123 Nf0c4c9e5c49d4fb8841410e932d9a978 rdf:first N7b687124f3c441c19e8520f6b585f51d
124 rdf:rest N5ab2e2c91583496cbe64e0bf1152c6f6
125 Nf217cad99a4649b79791c574dcb1145f schema:familyName Presutti
126 schema:givenName Valentina
127 rdf:type schema:Person
128 Nf39060990eb24aaeb8598d4fbf0a1259 schema:familyName Bontcheva
129 schema:givenName Kalina
130 rdf:type schema:Person
131 Nfdd02fcb0448475b8414a0446b618c50 schema:name dimensions_id
132 schema:value pub.1107054125
133 rdf:type schema:PropertyValue
134 Nff27e10308404f5cb029074f49e7036c schema:familyName Vrandečić
135 schema:givenName Denny
136 rdf:type schema:Person
137 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
138 schema:name Information and Computing Sciences
139 rdf:type schema:DefinedTerm
140 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
141 schema:name Artificial Intelligence and Image Processing
142 rdf:type schema:DefinedTerm
143 sg:person.011072266527.37 schema:affiliation https://www.grid.ac/institutes/grid.481550.d
144 schema:familyName Bhatia
145 schema:givenName Sumit
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011072266527.37
147 rdf:type schema:Person
148 sg:pub.10.1007/978-1-4471-2099-5_31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007865004
149 https://doi.org/10.1007/978-1-4471-2099-5_31
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/978-3-319-25007-6_36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003038935
152 https://doi.org/10.1007/978-3-319-25007-6_36
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/978-3-319-34129-3_47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021576402
155 https://doi.org/10.1007/978-3-319-34129-3_47
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/978-3-319-46547-0_35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084843066
158 https://doi.org/10.1007/978-3-319-46547-0_35
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/978-3-319-47602-5_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030562906
161 https://doi.org/10.1007/978-3-319-47602-5_17
162 rdf:type schema:CreativeWork
163 sg:pub.10.1007/978-3-319-47602-5_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026261340
164 https://doi.org/10.1007/978-3-319-47602-5_8
165 rdf:type schema:CreativeWork
166 sg:pub.10.1007/978-3-319-56608-5_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084747066
167 https://doi.org/10.1007/978-3-319-56608-5_25
168 rdf:type schema:CreativeWork
169 sg:pub.10.1007/978-3-540-89704-0_34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019081685
170 https://doi.org/10.1007/978-3-540-89704-0_34
171 rdf:type schema:CreativeWork
172 sg:pub.10.1007/978-3-642-13486-9_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024958425
173 https://doi.org/10.1007/978-3-642-13486-9_21
174 rdf:type schema:CreativeWork
175 sg:pub.10.1007/978-3-642-35176-1_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021687228
176 https://doi.org/10.1007/978-3-642-35176-1_20
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1002/asi.20804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035063530
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.ipm.2004.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030449859
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1017/cbo9780511809071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098672059
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1037/h0031619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004984215
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1080/07421222.2003.11045749 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085537998
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1108/eb046814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037275209
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1145/1376616.1376651 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012305232
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1145/1390334.1390407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017167046
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1145/1645953.1646287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032851708
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1145/1835449.1835507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038529270
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1145/2063576.2063587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047174113
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1145/2094072.2094075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045857508
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1145/2396761.2398702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017933982
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1145/2746266.2746278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036579747
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1145/2783258.2783325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001139633
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1145/2783258.2788609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019619762
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1145/290941.290947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002001376
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1145/3209542.3209548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105383064
213 rdf:type schema:CreativeWork
214 https://doi.org/10.14778/1920841.1921046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067367811
215 rdf:type schema:CreativeWork
216 https://doi.org/10.14778/2078331.2078339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067367921
217 rdf:type schema:CreativeWork
218 https://doi.org/10.18653/v1/p16-2040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099113713
219 rdf:type schema:CreativeWork
220 https://doi.org/10.18653/v1/p16-2043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099113717
221 rdf:type schema:CreativeWork
222 https://doi.org/10.3115/v1/p15-1055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099115062
223 rdf:type schema:CreativeWork
224 https://doi.org/10.4018/jdm.2005010103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029601154
225 rdf:type schema:CreativeWork
226 https://www.grid.ac/institutes/grid.481550.d schema:alternateName IBM Research - India
227 schema:name IBM Research AI, Delhi, India
228 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...