Estimating Dynamic Stability Event Probabilities from Simulation and Wave Modeling Methods View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2019-01-02

AUTHORS

M. Ross Leadbetter , Igor Rychlik , Karl Stambaugh

ABSTRACT

Predicting the dynamic stability of ships in severe wave environments is challenging, not only due to the complex non-linear hydrodynamics, but also the need to characterize the rarity of events. The latter involves conducting enough simulations to calculate associated small probabilities or alternate approaches for estimating the rarity of events. This paper presents techniques for calculating probabilities of occurrence of rare dynamic stability events using direct counting, Poisson distribution fitting techniques and estimating the dynamic event probabilities. The latter probability estimate is obtained by defining dangerous wave conditions that produce rare events through hydrodynamic simulations and estimating their probabilities of occurrence through joint probability distributions or simulations of the wave environment. The accuracy of these calculations is discussed. An example application is presented using a U.S. Coast Guard Cutter along with information useful for operator guidance in heavy weather. A recommendation is presented for further work on defining the limiting probabilities one might use for design or operational criteria. More... »

PAGES

381-391

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-00516-0_22

DOI

http://dx.doi.org/10.1007/978-3-030-00516-0_22

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111052525


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of North Carolina, Chapel Hill, NC, USA", 
          "id": "http://www.grid.ac/institutes/grid.410711.2", 
          "name": [
            "University of North Carolina, Chapel Hill, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leadbetter", 
        "givenName": "M. Ross", 
        "id": "sg:person.010453124705.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010453124705.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chalmers University, Gothenburg, Sweden", 
          "id": "http://www.grid.ac/institutes/grid.5371.0", 
          "name": [
            "Chalmers University, Gothenburg, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rychlik", 
        "givenName": "Igor", 
        "id": "sg:person.015546022606.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015546022606.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "U.S. Coast Guard, SFLC NAME, Baltimore, MD, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "U.S. Coast Guard, SFLC NAME, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stambaugh", 
        "givenName": "Karl", 
        "type": "Person"
      }
    ], 
    "datePublished": "2019-01-02", 
    "datePublishedReg": "2019-01-02", 
    "description": "Predicting the dynamic stability of ships in severe wave environments is challenging, not only due to the complex non-linear hydrodynamics, but also the need to characterize the rarity of events. The latter involves conducting enough simulations to calculate associated small probabilities or alternate approaches for estimating the rarity of events. This paper presents techniques for calculating probabilities of occurrence of rare dynamic stability events using direct counting, Poisson distribution fitting techniques and estimating the dynamic event probabilities. The latter probability estimate is obtained by defining dangerous wave conditions that produce rare events through hydrodynamic simulations and estimating their probabilities of occurrence through joint probability distributions or simulations of the wave environment. The accuracy of these calculations is discussed. An example application is presented using a U.S. Coast Guard Cutter along with information useful for operator guidance in heavy weather. A recommendation is presented for further work on defining the limiting probabilities one might use for design or operational criteria.", 
    "editor": [
      {
        "familyName": "Belenky", 
        "givenName": "Vadim L.", 
        "type": "Person"
      }, 
      {
        "familyName": "Spyrou", 
        "givenName": "Kostas J.", 
        "type": "Person"
      }, 
      {
        "familyName": "van Walree", 
        "givenName": "Frans", 
        "type": "Person"
      }, 
      {
        "familyName": "Almeida Santos Neves", 
        "givenName": "Marcelo", 
        "type": "Person"
      }, 
      {
        "familyName": "Umeda", 
        "givenName": "Naoya", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-00516-0_22", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-00514-6", 
        "978-3-030-00516-0"
      ], 
      "name": "Contemporary Ideas on Ship Stability", 
      "type": "Book"
    }, 
    "keywords": [
      "rarity of events", 
      "event probabilities", 
      "joint probability distribution", 
      "non-linear hydrodynamics", 
      "wave environment", 
      "probability distribution", 
      "probability of occurrence", 
      "enough simulations", 
      "Poisson distribution", 
      "small probability", 
      "Coast Guard cutter", 
      "wave conditions", 
      "modeling method", 
      "operator guidance", 
      "dynamic stability", 
      "probability estimates", 
      "U.S. Coast Guard cutter", 
      "example application", 
      "heavy weather", 
      "hydrodynamic simulations", 
      "simulations", 
      "probability", 
      "stability events", 
      "alternate approach", 
      "rare event", 
      "hydrodynamics", 
      "distribution", 
      "cutter", 
      "calculations", 
      "ship", 
      "technique", 
      "estimates", 
      "accuracy", 
      "design", 
      "stability", 
      "applications", 
      "approach", 
      "environment", 
      "conditions", 
      "operational criteria", 
      "method", 
      "work", 
      "weather", 
      "further work", 
      "criteria", 
      "counting", 
      "information", 
      "guidance", 
      "occurrence", 
      "events", 
      "need", 
      "direct counting", 
      "recommendations", 
      "rarity", 
      "paper", 
      "severe wave environments", 
      "complex non-linear hydrodynamics", 
      "rare dynamic stability events", 
      "dynamic stability events", 
      "dynamic event probabilities", 
      "latter probability estimate", 
      "dangerous wave conditions", 
      "Guard Cutter", 
      "Dynamic Stability Event Probabilities", 
      "Stability Event Probabilities", 
      "Wave Modeling Methods"
    ], 
    "name": "Estimating Dynamic Stability Event Probabilities from Simulation and Wave Modeling Methods", 
    "pagination": "381-391", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111052525"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-00516-0_22"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-00516-0_22", 
      "https://app.dimensions.ai/details/publication/pub.1111052525"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_108.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-030-00516-0_22"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-00516-0_22'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-00516-0_22'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-00516-0_22'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-00516-0_22'


 

This table displays all metadata directly associated to this object as RDF triples.

165 TRIPLES      23 PREDICATES      91 URIs      84 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-00516-0_22 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N5b1a2f216da84f6eba0235284e794e72
4 schema:datePublished 2019-01-02
5 schema:datePublishedReg 2019-01-02
6 schema:description Predicting the dynamic stability of ships in severe wave environments is challenging, not only due to the complex non-linear hydrodynamics, but also the need to characterize the rarity of events. The latter involves conducting enough simulations to calculate associated small probabilities or alternate approaches for estimating the rarity of events. This paper presents techniques for calculating probabilities of occurrence of rare dynamic stability events using direct counting, Poisson distribution fitting techniques and estimating the dynamic event probabilities. The latter probability estimate is obtained by defining dangerous wave conditions that produce rare events through hydrodynamic simulations and estimating their probabilities of occurrence through joint probability distributions or simulations of the wave environment. The accuracy of these calculations is discussed. An example application is presented using a U.S. Coast Guard Cutter along with information useful for operator guidance in heavy weather. A recommendation is presented for further work on defining the limiting probabilities one might use for design or operational criteria.
7 schema:editor Nac02bb8d864c452ebd30b150771a7204
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N649214d6562f4bf3b43649b6c1748fdd
12 schema:keywords Coast Guard cutter
13 Dynamic Stability Event Probabilities
14 Guard Cutter
15 Poisson distribution
16 Stability Event Probabilities
17 U.S. Coast Guard cutter
18 Wave Modeling Methods
19 accuracy
20 alternate approach
21 applications
22 approach
23 calculations
24 complex non-linear hydrodynamics
25 conditions
26 counting
27 criteria
28 cutter
29 dangerous wave conditions
30 design
31 direct counting
32 distribution
33 dynamic event probabilities
34 dynamic stability
35 dynamic stability events
36 enough simulations
37 environment
38 estimates
39 event probabilities
40 events
41 example application
42 further work
43 guidance
44 heavy weather
45 hydrodynamic simulations
46 hydrodynamics
47 information
48 joint probability distribution
49 latter probability estimate
50 method
51 modeling method
52 need
53 non-linear hydrodynamics
54 occurrence
55 operational criteria
56 operator guidance
57 paper
58 probability
59 probability distribution
60 probability estimates
61 probability of occurrence
62 rare dynamic stability events
63 rare event
64 rarity
65 rarity of events
66 recommendations
67 severe wave environments
68 ship
69 simulations
70 small probability
71 stability
72 stability events
73 technique
74 wave conditions
75 wave environment
76 weather
77 work
78 schema:name Estimating Dynamic Stability Event Probabilities from Simulation and Wave Modeling Methods
79 schema:pagination 381-391
80 schema:productId N7664909d3b3a44259883a5317122da73
81 N78bb9ffa3d9d46fa829812c6516e4a81
82 schema:publisher N74befe580b7a496d97c6d84bbccdbfbe
83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111052525
84 https://doi.org/10.1007/978-3-030-00516-0_22
85 schema:sdDatePublished 2022-01-01T19:06
86 schema:sdLicense https://scigraph.springernature.com/explorer/license/
87 schema:sdPublisher N0a76043704dc4289b1bb958f0daf657d
88 schema:url https://doi.org/10.1007/978-3-030-00516-0_22
89 sgo:license sg:explorer/license/
90 sgo:sdDataset chapters
91 rdf:type schema:Chapter
92 N0a76043704dc4289b1bb958f0daf657d schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 N0b4674089b3f42899a0322810aa2903f schema:familyName Belenky
95 schema:givenName Vadim L.
96 rdf:type schema:Person
97 N19709b51b08f4679b28fd67ea4c6717f rdf:first N23d6e6e89f604ebb8ec973df1c4dd042
98 rdf:rest Nbee0b534474b48e4ad53d87b7c667f25
99 N23d6e6e89f604ebb8ec973df1c4dd042 schema:familyName Almeida Santos Neves
100 schema:givenName Marcelo
101 rdf:type schema:Person
102 N470c9625411e4f92a296f20686fd935c schema:familyName Spyrou
103 schema:givenName Kostas J.
104 rdf:type schema:Person
105 N5b1a2f216da84f6eba0235284e794e72 rdf:first sg:person.010453124705.04
106 rdf:rest Nbf37d2916e46462197e7ab3d5b2b3c69
107 N5dedb85a433e496f8c131e0c6492277c schema:familyName van Walree
108 schema:givenName Frans
109 rdf:type schema:Person
110 N649214d6562f4bf3b43649b6c1748fdd schema:isbn 978-3-030-00514-6
111 978-3-030-00516-0
112 schema:name Contemporary Ideas on Ship Stability
113 rdf:type schema:Book
114 N6645bc26055243e392eaebf2222d9602 schema:familyName Umeda
115 schema:givenName Naoya
116 rdf:type schema:Person
117 N74befe580b7a496d97c6d84bbccdbfbe schema:name Springer Nature
118 rdf:type schema:Organisation
119 N7664909d3b3a44259883a5317122da73 schema:name doi
120 schema:value 10.1007/978-3-030-00516-0_22
121 rdf:type schema:PropertyValue
122 N78bb9ffa3d9d46fa829812c6516e4a81 schema:name dimensions_id
123 schema:value pub.1111052525
124 rdf:type schema:PropertyValue
125 N7b1d0bee0b3d4e8fbc67e9262d01bef2 rdf:first Nc6d06b967d8e41f1b2b5360d4e37dfee
126 rdf:rest rdf:nil
127 Nac02bb8d864c452ebd30b150771a7204 rdf:first N0b4674089b3f42899a0322810aa2903f
128 rdf:rest Nc50811ba9c604267a0199048d3858802
129 Nb851f83b865b452bbd21dbb8776b4ac7 rdf:first N5dedb85a433e496f8c131e0c6492277c
130 rdf:rest N19709b51b08f4679b28fd67ea4c6717f
131 Nbee0b534474b48e4ad53d87b7c667f25 rdf:first N6645bc26055243e392eaebf2222d9602
132 rdf:rest rdf:nil
133 Nbf37d2916e46462197e7ab3d5b2b3c69 rdf:first sg:person.015546022606.95
134 rdf:rest N7b1d0bee0b3d4e8fbc67e9262d01bef2
135 Nc50811ba9c604267a0199048d3858802 rdf:first N470c9625411e4f92a296f20686fd935c
136 rdf:rest Nb851f83b865b452bbd21dbb8776b4ac7
137 Nc6d06b967d8e41f1b2b5360d4e37dfee schema:affiliation grid-institutes:None
138 schema:familyName Stambaugh
139 schema:givenName Karl
140 rdf:type schema:Person
141 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
142 schema:name Information and Computing Sciences
143 rdf:type schema:DefinedTerm
144 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
145 schema:name Artificial Intelligence and Image Processing
146 rdf:type schema:DefinedTerm
147 sg:person.010453124705.04 schema:affiliation grid-institutes:grid.410711.2
148 schema:familyName Leadbetter
149 schema:givenName M. Ross
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010453124705.04
151 rdf:type schema:Person
152 sg:person.015546022606.95 schema:affiliation grid-institutes:grid.5371.0
153 schema:familyName Rychlik
154 schema:givenName Igor
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015546022606.95
156 rdf:type schema:Person
157 grid-institutes:None schema:alternateName U.S. Coast Guard, SFLC NAME, Baltimore, MD, USA
158 schema:name U.S. Coast Guard, SFLC NAME, Baltimore, MD, USA
159 rdf:type schema:Organization
160 grid-institutes:grid.410711.2 schema:alternateName University of North Carolina, Chapel Hill, NC, USA
161 schema:name University of North Carolina, Chapel Hill, NC, USA
162 rdf:type schema:Organization
163 grid-institutes:grid.5371.0 schema:alternateName Chalmers University, Gothenburg, Sweden
164 schema:name Chalmers University, Gothenburg, Sweden
165 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...