Pancreatic Involvement in Von Hippel-Lindau Disease View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2004

AUTHORS

Pascal Hammel , Benoît Terris , Valérie Vilgrain , Philippe Ruszniewski , Stéphane Richard

ABSTRACT

Von Hippel-Lindau (VHL) disease is characterized by a dominant autosomal predisposition to develop hemangioblastomas of the retina and central nervous system (CNS), renal cell carcinoma, pheochromocytoma and endolymphatic sac tumors with marked phenotypic variability.1,2 The VHL gene, located on chromosome 3p25–26, is composed of three exons, encoding for a 213 amino acid protein which is widely expressed in both fetal and adult human tissues. A hallmark of VHL tumours is their high degree of vascularization, which arises from overexpression of the vascular endothelial growth factor (VEGF), a crucial factor in angiogenesis.2 The VHL gene is a multifunctional tumour suppressor gene which is principally involved in negative regulation of hypoxia-inducible mRNAs such as the mRNA encoding for VEGF. The activity of VHL protein has been linked to the targeting of specific proteins for ubiquitin-dependent proteolysis.1,2 Lack of degradation of this factor due to absence of the VHL protein results in uncontrolled production of factors promoting formation of blood vessels such as VEGF.2 Reintroduction of wild-type VHL protein in renal cell carcinoma cell lines lacking wild-type VHL protein suppresses their high level of VEGF mRNA accumulation. In addition, reintroduction of wild-type VHL protein prevents the development of tumours in nude mouse xenografts, confirming the tumour suppressive function the VHL gene. Germ-line mutations in the VHL gene are extremely heterogeneous and are distributed widely throughout the coding sequence.1–3 More... »

PAGES

144-152

Book

TITLE

Pancreatic Disease

ISBN

978-1-4471-3491-6
978-1-85233-904-3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-85233-904-3_12

DOI

http://dx.doi.org/10.1007/978-1-85233-904-3_12

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016946925


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Hammel", 
        "givenName": "Pascal", 
        "id": "sg:person.01355345644.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355345644.55"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Terris", 
        "givenName": "Beno\u00eet", 
        "id": "sg:person.0722036672.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722036672.50"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Vilgrain", 
        "givenName": "Val\u00e9rie", 
        "id": "sg:person.0761705775.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761705775.52"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Ruszniewski", 
        "givenName": "Philippe", 
        "id": "sg:person.0640551545.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640551545.21"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Richard", 
        "givenName": "St\u00e9phane", 
        "id": "sg:person.01100416415.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100416415.81"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2004", 
    "datePublishedReg": "2004-01-01", 
    "description": "Von Hippel-Lindau (VHL) disease is characterized by a dominant autosomal predisposition to develop hemangioblastomas of the retina and central nervous system (CNS), renal cell carcinoma, pheochromocytoma and endolymphatic sac tumors with marked phenotypic variability.1,2 The VHL gene, located on chromosome 3p25\u201326, is composed of three exons, encoding for a 213 amino acid protein which is widely expressed in both fetal and adult human tissues. A hallmark of VHL tumours is their high degree of vascularization, which arises from overexpression of the vascular endothelial growth factor (VEGF), a crucial factor in angiogenesis.2 The VHL gene is a multifunctional tumour suppressor gene which is principally involved in negative regulation of hypoxia-inducible mRNAs such as the mRNA encoding for VEGF. The activity of VHL protein has been linked to the targeting of specific proteins for ubiquitin-dependent proteolysis.1,2 Lack of degradation of this factor due to absence of the VHL protein results in uncontrolled production of factors promoting formation of blood vessels such as VEGF.2 Reintroduction of wild-type VHL protein in renal cell carcinoma cell lines lacking wild-type VHL protein suppresses their high level of VEGF mRNA accumulation. In addition, reintroduction of wild-type VHL protein prevents the development of tumours in nude mouse xenografts, confirming the tumour suppressive function the VHL gene. Germ-line mutations in the VHL gene are extremely heterogeneous and are distributed widely throughout the coding sequence.1\u20133", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-85233-904-3_12", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4471-3491-6", 
        "978-1-85233-904-3"
      ], 
      "name": "Pancreatic Disease", 
      "type": "Book"
    }, 
    "keywords": [
      "wild-type VHL protein", 
      "VHL protein", 
      "hypoxia-inducible mRNAs", 
      "VHL gene", 
      "ubiquitin-dependent proteolysis", 
      "amino acid protein", 
      "tumor suppressive function", 
      "tumor suppressor gene", 
      "renal cell carcinoma cell lines", 
      "vascular endothelial growth factor", 
      "VEGF mRNA accumulation", 
      "acid protein", 
      "germ-line mutations", 
      "negative regulation", 
      "specific proteins", 
      "mRNA accumulation", 
      "genes", 
      "suppressor gene", 
      "phenotypic variability", 
      "chromosome 3p25", 
      "protein", 
      "von Hippel-Lindau disease", 
      "Hippel-Lindau disease", 
      "carcinoma cell lines", 
      "development of tumors", 
      "cell carcinoma cell lines", 
      "nude mouse xenografts", 
      "VHL tumors", 
      "central nervous system", 
      "cell lines", 
      "growth factor", 
      "mouse xenografts", 
      "marked phenotypic variability", 
      "uncontrolled production", 
      "human tissues", 
      "mRNA", 
      "lack of degradation", 
      "suppressive function", 
      "reintroduction", 
      "endothelial growth factor", 
      "exons", 
      "nervous system", 
      "proteolysis", 
      "overexpression", 
      "mutations", 
      "regulation", 
      "high levels", 
      "sequence", 
      "high degree", 
      "targeting", 
      "hallmark", 
      "accumulation", 
      "angiogenesis", 
      "renal cell carcinoma", 
      "factors", 
      "degradation", 
      "blood vessels", 
      "tissue", 
      "production", 
      "crucial factor", 
      "activity", 
      "absence", 
      "lines", 
      "function", 
      "disease", 
      "formation", 
      "predisposition", 
      "variability", 
      "xenografts", 
      "development", 
      "involvement", 
      "tumors", 
      "retina", 
      "endolymphatic sac tumors", 
      "vascularization", 
      "levels", 
      "addition", 
      "cell carcinoma", 
      "lack", 
      "hemangioblastomas", 
      "system", 
      "pheochromocytoma", 
      "degree", 
      "carcinoma", 
      "sac tumor", 
      "vessels", 
      "pancreatic involvement", 
      "dominant autosomal predisposition", 
      "autosomal predisposition", 
      "multifunctional tumour suppressor gene"
    ], 
    "name": "Pancreatic Involvement in Von Hippel-Lindau Disease", 
    "pagination": "144-152", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016946925"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-85233-904-3_12"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-85233-904-3_12", 
      "https://app.dimensions.ai/details/publication/pub.1016946925"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T18:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_348.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-85233-904-3_12"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-85233-904-3_12'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-85233-904-3_12'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-85233-904-3_12'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-85233-904-3_12'


 

This table displays all metadata directly associated to this object as RDF triples.

168 TRIPLES      22 PREDICATES      116 URIs      108 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-85233-904-3_12 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 anzsrc-for:0604
4 schema:author Na4178401c5664a66b0ca160fd1469106
5 schema:datePublished 2004
6 schema:datePublishedReg 2004-01-01
7 schema:description Von Hippel-Lindau (VHL) disease is characterized by a dominant autosomal predisposition to develop hemangioblastomas of the retina and central nervous system (CNS), renal cell carcinoma, pheochromocytoma and endolymphatic sac tumors with marked phenotypic variability.1,2 The VHL gene, located on chromosome 3p25–26, is composed of three exons, encoding for a 213 amino acid protein which is widely expressed in both fetal and adult human tissues. A hallmark of VHL tumours is their high degree of vascularization, which arises from overexpression of the vascular endothelial growth factor (VEGF), a crucial factor in angiogenesis.2 The VHL gene is a multifunctional tumour suppressor gene which is principally involved in negative regulation of hypoxia-inducible mRNAs such as the mRNA encoding for VEGF. The activity of VHL protein has been linked to the targeting of specific proteins for ubiquitin-dependent proteolysis.1,2 Lack of degradation of this factor due to absence of the VHL protein results in uncontrolled production of factors promoting formation of blood vessels such as VEGF.2 Reintroduction of wild-type VHL protein in renal cell carcinoma cell lines lacking wild-type VHL protein suppresses their high level of VEGF mRNA accumulation. In addition, reintroduction of wild-type VHL protein prevents the development of tumours in nude mouse xenografts, confirming the tumour suppressive function the VHL gene. Germ-line mutations in the VHL gene are extremely heterogeneous and are distributed widely throughout the coding sequence.1–3
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N157631a24afd44ea9037f9689c7ab5ae
12 schema:keywords Hippel-Lindau disease
13 VEGF mRNA accumulation
14 VHL gene
15 VHL protein
16 VHL tumors
17 absence
18 accumulation
19 acid protein
20 activity
21 addition
22 amino acid protein
23 angiogenesis
24 autosomal predisposition
25 blood vessels
26 carcinoma
27 carcinoma cell lines
28 cell carcinoma
29 cell carcinoma cell lines
30 cell lines
31 central nervous system
32 chromosome 3p25
33 crucial factor
34 degradation
35 degree
36 development
37 development of tumors
38 disease
39 dominant autosomal predisposition
40 endolymphatic sac tumors
41 endothelial growth factor
42 exons
43 factors
44 formation
45 function
46 genes
47 germ-line mutations
48 growth factor
49 hallmark
50 hemangioblastomas
51 high degree
52 high levels
53 human tissues
54 hypoxia-inducible mRNAs
55 involvement
56 lack
57 lack of degradation
58 levels
59 lines
60 mRNA
61 mRNA accumulation
62 marked phenotypic variability
63 mouse xenografts
64 multifunctional tumour suppressor gene
65 mutations
66 negative regulation
67 nervous system
68 nude mouse xenografts
69 overexpression
70 pancreatic involvement
71 phenotypic variability
72 pheochromocytoma
73 predisposition
74 production
75 protein
76 proteolysis
77 regulation
78 reintroduction
79 renal cell carcinoma
80 renal cell carcinoma cell lines
81 retina
82 sac tumor
83 sequence
84 specific proteins
85 suppressive function
86 suppressor gene
87 system
88 targeting
89 tissue
90 tumor suppressive function
91 tumor suppressor gene
92 tumors
93 ubiquitin-dependent proteolysis
94 uncontrolled production
95 variability
96 vascular endothelial growth factor
97 vascularization
98 vessels
99 von Hippel-Lindau disease
100 wild-type VHL protein
101 xenografts
102 schema:name Pancreatic Involvement in Von Hippel-Lindau Disease
103 schema:pagination 144-152
104 schema:productId N8eb57afebd294b2fb5d51ea15d931459
105 N982f25c83f1e4425b6564e8ed31cffb8
106 schema:publisher Nbb30f4de842346788f2283ba14b3f981
107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016946925
108 https://doi.org/10.1007/978-1-85233-904-3_12
109 schema:sdDatePublished 2021-11-01T18:56
110 schema:sdLicense https://scigraph.springernature.com/explorer/license/
111 schema:sdPublisher Nba572c8059c34d6eb40863e0e1e72620
112 schema:url https://doi.org/10.1007/978-1-85233-904-3_12
113 sgo:license sg:explorer/license/
114 sgo:sdDataset chapters
115 rdf:type schema:Chapter
116 N157631a24afd44ea9037f9689c7ab5ae schema:isbn 978-1-4471-3491-6
117 978-1-85233-904-3
118 schema:name Pancreatic Disease
119 rdf:type schema:Book
120 N6ed8d5ca2a6e4f86b09eab6dfa299ab3 rdf:first sg:person.0722036672.50
121 rdf:rest Nb0b5341c5a5f405f8b26ea025bf525c4
122 N8bc22e25b2d5446e97bfed5ba0d2fdb4 rdf:first sg:person.0640551545.21
123 rdf:rest Nf451a5e6ef554f88b8b528d0d13c7368
124 N8eb57afebd294b2fb5d51ea15d931459 schema:name doi
125 schema:value 10.1007/978-1-85233-904-3_12
126 rdf:type schema:PropertyValue
127 N982f25c83f1e4425b6564e8ed31cffb8 schema:name dimensions_id
128 schema:value pub.1016946925
129 rdf:type schema:PropertyValue
130 Na4178401c5664a66b0ca160fd1469106 rdf:first sg:person.01355345644.55
131 rdf:rest N6ed8d5ca2a6e4f86b09eab6dfa299ab3
132 Nb0b5341c5a5f405f8b26ea025bf525c4 rdf:first sg:person.0761705775.52
133 rdf:rest N8bc22e25b2d5446e97bfed5ba0d2fdb4
134 Nba572c8059c34d6eb40863e0e1e72620 schema:name Springer Nature - SN SciGraph project
135 rdf:type schema:Organization
136 Nbb30f4de842346788f2283ba14b3f981 schema:name Springer Nature
137 rdf:type schema:Organisation
138 Nf451a5e6ef554f88b8b528d0d13c7368 rdf:first sg:person.01100416415.81
139 rdf:rest rdf:nil
140 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
141 schema:name Biological Sciences
142 rdf:type schema:DefinedTerm
143 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
144 schema:name Biochemistry and Cell Biology
145 rdf:type schema:DefinedTerm
146 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
147 schema:name Genetics
148 rdf:type schema:DefinedTerm
149 sg:person.01100416415.81 schema:familyName Richard
150 schema:givenName Stéphane
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100416415.81
152 rdf:type schema:Person
153 sg:person.01355345644.55 schema:familyName Hammel
154 schema:givenName Pascal
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355345644.55
156 rdf:type schema:Person
157 sg:person.0640551545.21 schema:familyName Ruszniewski
158 schema:givenName Philippe
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640551545.21
160 rdf:type schema:Person
161 sg:person.0722036672.50 schema:familyName Terris
162 schema:givenName Benoît
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722036672.50
164 rdf:type schema:Person
165 sg:person.0761705775.52 schema:familyName Vilgrain
166 schema:givenName Valérie
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761705775.52
168 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...