Dynamics of Networks of Leaky-Integrate-and-Fire Neurons View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2010

AUTHORS

Antonio Politi , Stefano Luccioli

ABSTRACT

The dynamics of pulse-coupled leaky-integrate-and-fire neurons is discussed in networks with arbitrary structure and in the presence of delayed interactions. The evolution equations are formally recasted as an event-driven map in a general context where the pulses are assumed to have a finite width. The final structure of the mathematical model is simple enough to allow for an easy implementation of standard nonlinear dynamics tools. We also discuss the properties of the transient dynamics in the presence of quenched disorder (and δ-like pulses). We find that the length of the transient depends strongly on the number N of neurons. It can be as long as 106–107 inter-spike intervals for relatively small networks, but it decreases upon increasing N because of the presence of stable clustered states. Finally, we discuss the same problem in the presence of randomly fluctuating synaptic connections (annealed disorder). The stationary state turns out to be strongly affected by finite-size corrections, to the extent that the number of clusters depends on the network size even for N≈20,000. More... »

PAGES

217-242

References to SciGraph publications

Book

TITLE

Network Science

ISBN

978-1-84996-395-4
978-1-84996-396-1

Author Affiliations

From Grant

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-84996-396-1_11

DOI

http://dx.doi.org/10.1007/978-1-84996-396-1_11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023943563


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Complex Systems", 
          "id": "https://www.grid.ac/institutes/grid.472642.1", 
          "name": [
            "Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, 50019, Sesto Fiorentino, Italy", 
            "Centro Studi Dinamiche Complesse, Sesto Fiorentino, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Politi", 
        "givenName": "Antonio", 
        "id": "sg:person.013264105675.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013264105675.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Complex Systems", 
          "id": "https://www.grid.ac/institutes/grid.472642.1", 
          "name": [
            "Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, 50019, Sesto Fiorentino, Italy", 
            "Centro Studi Dinamiche Complesse, Sesto Fiorentino, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luccioli", 
        "givenName": "Stefano", 
        "id": "sg:person.0705667553.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705667553.55"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.3389/neuro.10.002.2008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001043275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008925309027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001166884", 
          "https://doi.org/10.1023/a:1008925309027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-69689-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004761286", 
          "https://doi.org/10.1007/978-3-642-69689-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-69689-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004761286", 
          "https://doi.org/10.1007/978-3-642-69689-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35065725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005249327", 
          "https://doi.org/10.1038/35065725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35065725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005249327", 
          "https://doi.org/10.1038/35065725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.76.046102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009944951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.76.046102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009944951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10827-009-0164-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010639524", 
          "https://doi.org/10.1007/s10827-009-0164-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10827-009-0164-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010639524", 
          "https://doi.org/10.1007/s10827-009-0164-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10827-009-0164-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010639524", 
          "https://doi.org/10.1007/s10827-009-0164-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10827-007-0049-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012263670", 
          "https://doi.org/10.1007/s10827-007-0049-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10827-007-0049-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012263670", 
          "https://doi.org/10.1007/s10827-007-0049-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.048102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021695703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.048102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021695703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.244103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023294704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.244103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023294704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/089976698300017214", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025353685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/089976699300016179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030739818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-04629-2_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031241271", 
          "https://doi.org/10.1007/978-3-642-04629-2_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.258701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031381407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.258701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031381407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.81.046119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032313081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.81.046119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032313081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.2006.18.5.1066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034381498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/neuro.10.013.2009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034426954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2005.09.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038360345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2005.09.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038360345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/39/26/l01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043475073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.074103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045427991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.074103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045427991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10827-008-0127-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047312344", 
          "https://doi.org/10.1007/s10827-008-0127-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10827-008-0127-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047312344", 
          "https://doi.org/10.1007/s10827-008-0127-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.74.036203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049776572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.74.036203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049776572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2967806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057888263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.45.3516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060485014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.45.3516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060485014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.45.8430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060485634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.45.8430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060485634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.47.220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060715106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.47.220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060715106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.48.1483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060715592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.48.1483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060715592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.48.3470", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060715839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.48.3470", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060715839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.54.5522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060720054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.54.5522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060720054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.57.2150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060721986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.57.2150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060721986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.60.2160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060724121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.60.2160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060724121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.79.031909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060738674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.79.031909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060738674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.1570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060810431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.1570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060810431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.208102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060825595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.208102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060825595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.274.5293.1724", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062555144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0150098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062840874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0036139998339643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062875588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511815706", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098668653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511623271", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098740815"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010", 
    "datePublishedReg": "2010-01-01", 
    "description": "The dynamics of pulse-coupled leaky-integrate-and-fire neurons is discussed in networks with arbitrary structure and in the presence of delayed interactions. The evolution equations are formally recasted as an event-driven map in a general context where the pulses are assumed to have a finite width. The final structure of the mathematical model is simple enough to allow for an easy implementation of standard nonlinear dynamics tools. We also discuss the properties of the transient dynamics in the presence of quenched disorder (and \u03b4-like pulses). We find that the length of the transient depends strongly on the number N of neurons. It can be as long as 106\u2013107 inter-spike intervals for relatively small networks, but it decreases upon increasing N because of the presence of stable clustered states. Finally, we discuss the same problem in the presence of randomly fluctuating synaptic connections (annealed disorder). The stationary state turns out to be strongly affected by finite-size corrections, to the extent that the number of clusters depends on the network size even for N\u224820,000.", 
    "editor": [
      {
        "familyName": "Estrada", 
        "givenName": "Ernesto", 
        "type": "Person"
      }, 
      {
        "familyName": "Fox", 
        "givenName": "Maria", 
        "type": "Person"
      }, 
      {
        "familyName": "Higham", 
        "givenName": "Desmond J.", 
        "type": "Person"
      }, 
      {
        "familyName": "Oppo", 
        "givenName": "Gian-Luca", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-84996-396-1_11", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3773495", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": {
      "isbn": [
        "978-1-84996-395-4", 
        "978-1-84996-396-1"
      ], 
      "name": "Network Science", 
      "type": "Book"
    }, 
    "name": "Dynamics of Networks of Leaky-Integrate-and-Fire Neurons", 
    "pagination": "217-242", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023943563"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-84996-396-1_11"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7211af4fbb96d58eea649fab8858fb83491e877a60890b33c4d2437de361bc9d"
        ]
      }
    ], 
    "publisher": {
      "location": "London", 
      "name": "Springer London", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-84996-396-1_11", 
      "https://app.dimensions.ai/details/publication/pub.1023943563"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_54011_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-1-84996-396-1_11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-84996-396-1_11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-84996-396-1_11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-84996-396-1_11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-84996-396-1_11'


 

This table displays all metadata directly associated to this object as RDF triples.

211 TRIPLES      23 PREDICATES      65 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-84996-396-1_11 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N70970708f3dc4aaf8691b067e561bc1a
4 schema:citation sg:pub.10.1007/978-3-642-04629-2_6
5 sg:pub.10.1007/978-3-642-69689-3
6 sg:pub.10.1007/s10827-007-0049-3
7 sg:pub.10.1007/s10827-008-0127-1
8 sg:pub.10.1007/s10827-009-0164-4
9 sg:pub.10.1023/a:1008925309027
10 sg:pub.10.1038/35065725
11 https://doi.org/10.1016/j.neuron.2005.09.032
12 https://doi.org/10.1017/cbo9780511623271
13 https://doi.org/10.1017/cbo9780511815706
14 https://doi.org/10.1063/1.2967806
15 https://doi.org/10.1088/0305-4470/39/26/l01
16 https://doi.org/10.1103/physreva.45.3516
17 https://doi.org/10.1103/physreva.45.8430
18 https://doi.org/10.1103/physreve.47.220
19 https://doi.org/10.1103/physreve.48.1483
20 https://doi.org/10.1103/physreve.48.3470
21 https://doi.org/10.1103/physreve.54.5522
22 https://doi.org/10.1103/physreve.57.2150
23 https://doi.org/10.1103/physreve.60.2160
24 https://doi.org/10.1103/physreve.74.036203
25 https://doi.org/10.1103/physreve.76.046102
26 https://doi.org/10.1103/physreve.79.031909
27 https://doi.org/10.1103/physreve.81.046119
28 https://doi.org/10.1103/physrevlett.100.048102
29 https://doi.org/10.1103/physrevlett.74.1570
30 https://doi.org/10.1103/physrevlett.89.208102
31 https://doi.org/10.1103/physrevlett.89.258701
32 https://doi.org/10.1103/physrevlett.92.074103
33 https://doi.org/10.1103/physrevlett.93.244103
34 https://doi.org/10.1126/science.274.5293.1724
35 https://doi.org/10.1137/0150098
36 https://doi.org/10.1137/s0036139998339643
37 https://doi.org/10.1162/089976698300017214
38 https://doi.org/10.1162/089976699300016179
39 https://doi.org/10.1162/neco.2006.18.5.1066
40 https://doi.org/10.3389/neuro.10.002.2008
41 https://doi.org/10.3389/neuro.10.013.2009
42 schema:datePublished 2010
43 schema:datePublishedReg 2010-01-01
44 schema:description The dynamics of pulse-coupled leaky-integrate-and-fire neurons is discussed in networks with arbitrary structure and in the presence of delayed interactions. The evolution equations are formally recasted as an event-driven map in a general context where the pulses are assumed to have a finite width. The final structure of the mathematical model is simple enough to allow for an easy implementation of standard nonlinear dynamics tools. We also discuss the properties of the transient dynamics in the presence of quenched disorder (and δ-like pulses). We find that the length of the transient depends strongly on the number N of neurons. It can be as long as 106–107 inter-spike intervals for relatively small networks, but it decreases upon increasing N because of the presence of stable clustered states. Finally, we discuss the same problem in the presence of randomly fluctuating synaptic connections (annealed disorder). The stationary state turns out to be strongly affected by finite-size corrections, to the extent that the number of clusters depends on the network size even for N≈20,000.
45 schema:editor N13fbe84f06204a96a80126cf83bc77f6
46 schema:genre chapter
47 schema:inLanguage en
48 schema:isAccessibleForFree false
49 schema:isPartOf Nfaef4a6fc2454d1ebe509e5856e65530
50 schema:name Dynamics of Networks of Leaky-Integrate-and-Fire Neurons
51 schema:pagination 217-242
52 schema:productId N35bb4b561c724f18887c553ac66e223f
53 N575b4e682a7d4350afd431bdacc9f7ce
54 Ncfd595fda0f24f0b9f211c28b695d044
55 schema:publisher N88665ee40f1a4116af38a72875bf603a
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023943563
57 https://doi.org/10.1007/978-1-84996-396-1_11
58 schema:sdDatePublished 2019-04-16T08:14
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N9c05b94203ed4f9887a13b6b4f6f0fa8
61 schema:url https://link.springer.com/10.1007%2F978-1-84996-396-1_11
62 sgo:license sg:explorer/license/
63 sgo:sdDataset chapters
64 rdf:type schema:Chapter
65 N01ebe1b67b2d496684ded15b87d13af5 rdf:first Nade0229fde9445a39965b0072dc640f6
66 rdf:rest N5b1e827237924f198b5f9845e8e8e25b
67 N13fbe84f06204a96a80126cf83bc77f6 rdf:first Nd2d22b38f8a54085aba1c9b854aa7c33
68 rdf:rest Na8c5dc2c2ca64dfabbf7a7e87aafd5a4
69 N35bb4b561c724f18887c553ac66e223f schema:name doi
70 schema:value 10.1007/978-1-84996-396-1_11
71 rdf:type schema:PropertyValue
72 N42bf27039c4442e39560d8b2414c9da1 schema:familyName Fox
73 schema:givenName Maria
74 rdf:type schema:Person
75 N575b4e682a7d4350afd431bdacc9f7ce schema:name readcube_id
76 schema:value 7211af4fbb96d58eea649fab8858fb83491e877a60890b33c4d2437de361bc9d
77 rdf:type schema:PropertyValue
78 N5b1e827237924f198b5f9845e8e8e25b rdf:first Nde4e5c44f3144e49bf56e98ba51da5f5
79 rdf:rest rdf:nil
80 N6f699e3657df48028f2f8abc1864ba30 rdf:first sg:person.0705667553.55
81 rdf:rest rdf:nil
82 N70970708f3dc4aaf8691b067e561bc1a rdf:first sg:person.013264105675.78
83 rdf:rest N6f699e3657df48028f2f8abc1864ba30
84 N88665ee40f1a4116af38a72875bf603a schema:location London
85 schema:name Springer London
86 rdf:type schema:Organisation
87 N9c05b94203ed4f9887a13b6b4f6f0fa8 schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 Na8c5dc2c2ca64dfabbf7a7e87aafd5a4 rdf:first N42bf27039c4442e39560d8b2414c9da1
90 rdf:rest N01ebe1b67b2d496684ded15b87d13af5
91 Nade0229fde9445a39965b0072dc640f6 schema:familyName Higham
92 schema:givenName Desmond J.
93 rdf:type schema:Person
94 Ncfd595fda0f24f0b9f211c28b695d044 schema:name dimensions_id
95 schema:value pub.1023943563
96 rdf:type schema:PropertyValue
97 Nd2d22b38f8a54085aba1c9b854aa7c33 schema:familyName Estrada
98 schema:givenName Ernesto
99 rdf:type schema:Person
100 Nde4e5c44f3144e49bf56e98ba51da5f5 schema:familyName Oppo
101 schema:givenName Gian-Luca
102 rdf:type schema:Person
103 Nfaef4a6fc2454d1ebe509e5856e65530 schema:isbn 978-1-84996-395-4
104 978-1-84996-396-1
105 schema:name Network Science
106 rdf:type schema:Book
107 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
108 schema:name Mathematical Sciences
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
111 schema:name Applied Mathematics
112 rdf:type schema:DefinedTerm
113 sg:grant.3773495 http://pending.schema.org/fundedItem sg:pub.10.1007/978-1-84996-396-1_11
114 rdf:type schema:MonetaryGrant
115 sg:person.013264105675.78 schema:affiliation https://www.grid.ac/institutes/grid.472642.1
116 schema:familyName Politi
117 schema:givenName Antonio
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013264105675.78
119 rdf:type schema:Person
120 sg:person.0705667553.55 schema:affiliation https://www.grid.ac/institutes/grid.472642.1
121 schema:familyName Luccioli
122 schema:givenName Stefano
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705667553.55
124 rdf:type schema:Person
125 sg:pub.10.1007/978-3-642-04629-2_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031241271
126 https://doi.org/10.1007/978-3-642-04629-2_6
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/978-3-642-69689-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004761286
129 https://doi.org/10.1007/978-3-642-69689-3
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s10827-007-0049-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012263670
132 https://doi.org/10.1007/s10827-007-0049-3
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s10827-008-0127-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047312344
135 https://doi.org/10.1007/s10827-008-0127-1
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s10827-009-0164-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010639524
138 https://doi.org/10.1007/s10827-009-0164-4
139 rdf:type schema:CreativeWork
140 sg:pub.10.1023/a:1008925309027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001166884
141 https://doi.org/10.1023/a:1008925309027
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/35065725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005249327
144 https://doi.org/10.1038/35065725
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.neuron.2005.09.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038360345
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1017/cbo9780511623271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098740815
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1017/cbo9780511815706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098668653
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1063/1.2967806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057888263
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1088/0305-4470/39/26/l01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043475073
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1103/physreva.45.3516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060485014
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1103/physreva.45.8430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060485634
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1103/physreve.47.220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060715106
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1103/physreve.48.1483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060715592
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1103/physreve.48.3470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060715839
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1103/physreve.54.5522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060720054
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1103/physreve.57.2150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060721986
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1103/physreve.60.2160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060724121
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1103/physreve.74.036203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049776572
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1103/physreve.76.046102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009944951
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1103/physreve.79.031909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060738674
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1103/physreve.81.046119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032313081
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1103/physrevlett.100.048102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021695703
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/physrevlett.74.1570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060810431
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1103/physrevlett.89.208102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060825595
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1103/physrevlett.89.258701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031381407
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1103/physrevlett.92.074103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045427991
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1103/physrevlett.93.244103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023294704
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1126/science.274.5293.1724 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062555144
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1137/0150098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062840874
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1137/s0036139998339643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062875588
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1162/089976698300017214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025353685
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1162/089976699300016179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030739818
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1162/neco.2006.18.5.1066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034381498
203 rdf:type schema:CreativeWork
204 https://doi.org/10.3389/neuro.10.002.2008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001043275
205 rdf:type schema:CreativeWork
206 https://doi.org/10.3389/neuro.10.013.2009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034426954
207 rdf:type schema:CreativeWork
208 https://www.grid.ac/institutes/grid.472642.1 schema:alternateName Institute for Complex Systems
209 schema:name Centro Studi Dinamiche Complesse, Sesto Fiorentino, Italy
210 Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, 50019, Sesto Fiorentino, Italy
211 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...