3D Face Recognition View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2009-01-29

AUTHORS

Berk Gökberk , Albert Ali Salah , Lale Akarun , Remy Etheve , Daniel Riccio , Jean-Luc Dugelay

ABSTRACT

Three-dimensional human facial surface information is a powerful biometric modality that has potential to improve the identification and/or verification accuracy of face recognition systems under challenging situations. In the presence of illumination, expression and pose variations, traditional 2D image-based face recognition algorithms usually encounter problems. With the availability of three-dimensional (3D) facial shape information, which is inherently insensitive to illumination and pose changes, these complications can be dealt with efficiently.In this chapter, an extensive coverage of state-of-the-art 3D face recognition systems is given, together with discussions on recent evaluation campaigns and currently available 3D face databases. Later on, a fast Iterative Closest Point-based 3D face recognition reference system developed during the BioSecure project is presented. The results of identification and verification experiments carried out on the 3D-RMA database are provided for comparative analysis. More... »

PAGES

263-295

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-84800-292-0_9

DOI

http://dx.doi.org/10.1007/978-1-84800-292-0_9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021427843


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Computer Engineering Dept. Bebek, Bo\u011fazi\u00c7i University, TR-34342, Istanbul, Turkey", 
          "id": "http://www.grid.ac/institutes/grid.11220.30", 
          "name": [
            "Computer Engineering Dept. Bebek, Bo\u011fazi\u00c7i University, TR-34342, Istanbul, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "G\u00f6kberk", 
        "givenName": "Berk", 
        "id": "sg:person.013445072555.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013445072555.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computer Engineering Dept., Currently with 13\nCentre of Mathematics and Computer Science (CWI), Formerly with Bo\u011fazi\u00e7i University, Kruislaan 413, 1090 GB, Amsterdam, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.6054.7", 
          "name": [
            "Computer Engineering Dept., Currently with 13\nCentre of Mathematics and Computer Science (CWI), Formerly with Bo\u011fazi\u00e7i University, Kruislaan 413, 1090 GB, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ali Salah", 
        "givenName": "Albert", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computer Engineering Dept. Bebek, Bo\u011fazi\u00c7i University, TR-34342, Istanbul, Turkey", 
          "id": "http://www.grid.ac/institutes/grid.11220.30", 
          "name": [
            "Computer Engineering Dept. Bebek, Bo\u011fazi\u00c7i University, TR-34342, Istanbul, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Akarun", 
        "givenName": "Lale", 
        "id": "sg:person.014635716465.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014635716465.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Eurecom, CMM, 2229 route des Cr\u00eates, B.P. 193, F-06904, Sophia Antipolis, Cedex, France", 
          "id": "http://www.grid.ac/institutes/grid.28848.3e", 
          "name": [
            "Institut Eurecom, CMM, 2229 route des Cr\u00eates, B.P. 193, F-06904, Sophia Antipolis, Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Etheve", 
        "givenName": "Remy", 
        "id": "sg:person.013533445403.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013533445403.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universita di Salerno, 84084, Fisciano, Salerno, Italy", 
          "id": "http://www.grid.ac/institutes/grid.11780.3f", 
          "name": [
            "Universita di Salerno, 84084, Fisciano, Salerno, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Riccio", 
        "givenName": "Daniel", 
        "id": "sg:person.016117625770.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016117625770.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Eurecom, CMM, 2229 route des Cr\u00eates, B.P. 193, F-06904, Sophia Antipolis, Cedex, France", 
          "id": "http://www.grid.ac/institutes/grid.28848.3e", 
          "name": [
            "Institut Eurecom, CMM, 2229 route des Cr\u00eates, B.P. 193, F-06904, Sophia Antipolis, Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dugelay", 
        "givenName": "Jean-Luc", 
        "id": "sg:person.015053427343.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015053427343.37"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2009-01-29", 
    "datePublishedReg": "2009-01-29", 
    "description": "Three-dimensional human facial surface information is a powerful biometric modality that has potential to improve the identification and/or verification accuracy of face recognition systems under challenging situations. In the presence of illumination, expression and pose variations, traditional 2D image-based face recognition algorithms usually encounter problems. With the availability of three-dimensional (3D) facial shape information, which is inherently insensitive to illumination and pose changes, these complications can be dealt with efficiently.In this chapter, an extensive coverage of state-of-the-art 3D face recognition systems is given, together with discussions on recent evaluation campaigns and currently available 3D face databases. Later on, a fast Iterative Closest Point-based 3D face recognition reference system developed during the BioSecure project is presented. The results of identification and verification experiments carried out on the 3D-RMA database are provided for comparative analysis.", 
    "editor": [
      {
        "familyName": "Petrovska-Delacr\u00e9taz", 
        "givenName": "Dijana", 
        "type": "Person"
      }, 
      {
        "familyName": "Dorizzi", 
        "givenName": "Bernadette", 
        "type": "Person"
      }, 
      {
        "familyName": "Chollet", 
        "givenName": "G\u00e9rard", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-84800-292-0_9", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-84800-291-3", 
        "978-1-84800-292-0"
      ], 
      "name": "Guide to Biometric Reference Systems and Performance Evaluation", 
      "type": "Book"
    }, 
    "keywords": [
      "face recognition system", 
      "recognition system", 
      "available 3D face databases", 
      "face recognition algorithm", 
      "facial shape information", 
      "biometric modalities", 
      "pose variations", 
      "verification accuracy", 
      "recognition algorithm", 
      "pose changes", 
      "face recognition", 
      "face databases", 
      "evaluation campaign", 
      "shape information", 
      "surface information", 
      "presence of illumination", 
      "verification experiments", 
      "database", 
      "information", 
      "algorithm", 
      "system", 
      "reference system", 
      "recognition", 
      "accuracy", 
      "extensive coverage", 
      "results of identification", 
      "comparative analysis", 
      "illumination", 
      "project", 
      "availability", 
      "situation", 
      "identification", 
      "experiments", 
      "coverage", 
      "state", 
      "results", 
      "chapter", 
      "modalities", 
      "discussion", 
      "analysis", 
      "campaign", 
      "variation", 
      "changes", 
      "presence", 
      "expression", 
      "problem", 
      "complications", 
      "Three-dimensional human facial surface information", 
      "human facial surface information", 
      "facial surface information", 
      "powerful biometric modality", 
      "traditional 2D image-based face recognition algorithms", 
      "image-based face recognition algorithms", 
      "three-dimensional (3D) facial shape information", 
      "art 3D face recognition systems", 
      "recent evaluation campaigns", 
      "fast Iterative Closest Point-based 3D face recognition reference system", 
      "Iterative Closest Point-based 3D face recognition reference system", 
      "Closest Point-based 3D face recognition reference system", 
      "Point-based 3D face recognition reference system", 
      "face recognition reference system", 
      "recognition reference system", 
      "BioSecure project"
    ], 
    "name": "3D Face Recognition", 
    "pagination": "263-295", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021427843"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-84800-292-0_9"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-84800-292-0_9", 
      "https://app.dimensions.ai/details/publication/pub.1021427843"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_404.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-84800-292-0_9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-84800-292-0_9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-84800-292-0_9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-84800-292-0_9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-84800-292-0_9'


 

This table displays all metadata directly associated to this object as RDF triples.

176 TRIPLES      23 PREDICATES      87 URIs      80 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-84800-292-0_9 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N31e893ef5de347ec8b4fd41027a11e4e
4 schema:datePublished 2009-01-29
5 schema:datePublishedReg 2009-01-29
6 schema:description Three-dimensional human facial surface information is a powerful biometric modality that has potential to improve the identification and/or verification accuracy of face recognition systems under challenging situations. In the presence of illumination, expression and pose variations, traditional 2D image-based face recognition algorithms usually encounter problems. With the availability of three-dimensional (3D) facial shape information, which is inherently insensitive to illumination and pose changes, these complications can be dealt with efficiently.In this chapter, an extensive coverage of state-of-the-art 3D face recognition systems is given, together with discussions on recent evaluation campaigns and currently available 3D face databases. Later on, a fast Iterative Closest Point-based 3D face recognition reference system developed during the BioSecure project is presented. The results of identification and verification experiments carried out on the 3D-RMA database are provided for comparative analysis.
7 schema:editor N291c370f760f452b819fcd87e1ad0af7
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N3bf2d4184c6b4d0ca55dea42f558fd9f
12 schema:keywords BioSecure project
13 Closest Point-based 3D face recognition reference system
14 Iterative Closest Point-based 3D face recognition reference system
15 Point-based 3D face recognition reference system
16 Three-dimensional human facial surface information
17 accuracy
18 algorithm
19 analysis
20 art 3D face recognition systems
21 availability
22 available 3D face databases
23 biometric modalities
24 campaign
25 changes
26 chapter
27 comparative analysis
28 complications
29 coverage
30 database
31 discussion
32 evaluation campaign
33 experiments
34 expression
35 extensive coverage
36 face databases
37 face recognition
38 face recognition algorithm
39 face recognition reference system
40 face recognition system
41 facial shape information
42 facial surface information
43 fast Iterative Closest Point-based 3D face recognition reference system
44 human facial surface information
45 identification
46 illumination
47 image-based face recognition algorithms
48 information
49 modalities
50 pose changes
51 pose variations
52 powerful biometric modality
53 presence
54 presence of illumination
55 problem
56 project
57 recent evaluation campaigns
58 recognition
59 recognition algorithm
60 recognition reference system
61 recognition system
62 reference system
63 results
64 results of identification
65 shape information
66 situation
67 state
68 surface information
69 system
70 three-dimensional (3D) facial shape information
71 traditional 2D image-based face recognition algorithms
72 variation
73 verification accuracy
74 verification experiments
75 schema:name 3D Face Recognition
76 schema:pagination 263-295
77 schema:productId N34b2c46d62994554bd32b27af2f30c5a
78 N6e66bd055df0457885c8caeebee62f23
79 schema:publisher N290cf5f120e341cdb3234fe35debf663
80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021427843
81 https://doi.org/10.1007/978-1-84800-292-0_9
82 schema:sdDatePublished 2022-01-01T19:23
83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
84 schema:sdPublisher Ncf47d3ce60e24d2d8241ca490cdb1568
85 schema:url https://doi.org/10.1007/978-1-84800-292-0_9
86 sgo:license sg:explorer/license/
87 sgo:sdDataset chapters
88 rdf:type schema:Chapter
89 N22365ef80e7948659b1820513dcceeee rdf:first sg:person.014635716465.58
90 rdf:rest N4806000215404501842578113c9ae87e
91 N290cf5f120e341cdb3234fe35debf663 schema:name Springer Nature
92 rdf:type schema:Organisation
93 N291c370f760f452b819fcd87e1ad0af7 rdf:first N47dc9b8b67d643f7866840158be67f49
94 rdf:rest N8bae752880644a079b74585f2d2968c4
95 N2b0ad53b6279440f8ad203fac10d2d6c schema:affiliation grid-institutes:grid.6054.7
96 schema:familyName Ali Salah
97 schema:givenName Albert
98 rdf:type schema:Person
99 N31e893ef5de347ec8b4fd41027a11e4e rdf:first sg:person.013445072555.19
100 rdf:rest Ne3e505bb545546b7bba7f99fd8a8ce93
101 N34b2c46d62994554bd32b27af2f30c5a schema:name doi
102 schema:value 10.1007/978-1-84800-292-0_9
103 rdf:type schema:PropertyValue
104 N3bf2d4184c6b4d0ca55dea42f558fd9f schema:isbn 978-1-84800-291-3
105 978-1-84800-292-0
106 schema:name Guide to Biometric Reference Systems and Performance Evaluation
107 rdf:type schema:Book
108 N3e45575578f14c259d63320b7ef9b239 schema:familyName Chollet
109 schema:givenName Gérard
110 rdf:type schema:Person
111 N45c81abdde974d718d896ea9eaa10e75 rdf:first sg:person.016117625770.11
112 rdf:rest N94cbca67a49b40618a402035f05a131f
113 N47dc9b8b67d643f7866840158be67f49 schema:familyName Petrovska-Delacrétaz
114 schema:givenName Dijana
115 rdf:type schema:Person
116 N4806000215404501842578113c9ae87e rdf:first sg:person.013533445403.38
117 rdf:rest N45c81abdde974d718d896ea9eaa10e75
118 N4cf4a81a5dec46f4a8231a9e5de7f333 schema:familyName Dorizzi
119 schema:givenName Bernadette
120 rdf:type schema:Person
121 N4dca5181d97d460ba0c8df7d838a6555 rdf:first N3e45575578f14c259d63320b7ef9b239
122 rdf:rest rdf:nil
123 N6e66bd055df0457885c8caeebee62f23 schema:name dimensions_id
124 schema:value pub.1021427843
125 rdf:type schema:PropertyValue
126 N8bae752880644a079b74585f2d2968c4 rdf:first N4cf4a81a5dec46f4a8231a9e5de7f333
127 rdf:rest N4dca5181d97d460ba0c8df7d838a6555
128 N94cbca67a49b40618a402035f05a131f rdf:first sg:person.015053427343.37
129 rdf:rest rdf:nil
130 Ncf47d3ce60e24d2d8241ca490cdb1568 schema:name Springer Nature - SN SciGraph project
131 rdf:type schema:Organization
132 Ne3e505bb545546b7bba7f99fd8a8ce93 rdf:first N2b0ad53b6279440f8ad203fac10d2d6c
133 rdf:rest N22365ef80e7948659b1820513dcceeee
134 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
135 schema:name Information and Computing Sciences
136 rdf:type schema:DefinedTerm
137 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
138 schema:name Artificial Intelligence and Image Processing
139 rdf:type schema:DefinedTerm
140 sg:person.013445072555.19 schema:affiliation grid-institutes:grid.11220.30
141 schema:familyName Gökberk
142 schema:givenName Berk
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013445072555.19
144 rdf:type schema:Person
145 sg:person.013533445403.38 schema:affiliation grid-institutes:grid.28848.3e
146 schema:familyName Etheve
147 schema:givenName Remy
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013533445403.38
149 rdf:type schema:Person
150 sg:person.014635716465.58 schema:affiliation grid-institutes:grid.11220.30
151 schema:familyName Akarun
152 schema:givenName Lale
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014635716465.58
154 rdf:type schema:Person
155 sg:person.015053427343.37 schema:affiliation grid-institutes:grid.28848.3e
156 schema:familyName Dugelay
157 schema:givenName Jean-Luc
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015053427343.37
159 rdf:type schema:Person
160 sg:person.016117625770.11 schema:affiliation grid-institutes:grid.11780.3f
161 schema:familyName Riccio
162 schema:givenName Daniel
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016117625770.11
164 rdf:type schema:Person
165 grid-institutes:grid.11220.30 schema:alternateName Computer Engineering Dept. Bebek, BoğaziÇi University, TR-34342, Istanbul, Turkey
166 schema:name Computer Engineering Dept. Bebek, BoğaziÇi University, TR-34342, Istanbul, Turkey
167 rdf:type schema:Organization
168 grid-institutes:grid.11780.3f schema:alternateName Universita di Salerno, 84084, Fisciano, Salerno, Italy
169 schema:name Universita di Salerno, 84084, Fisciano, Salerno, Italy
170 rdf:type schema:Organization
171 grid-institutes:grid.28848.3e schema:alternateName Institut Eurecom, CMM, 2229 route des Crêtes, B.P. 193, F-06904, Sophia Antipolis, Cedex, France
172 schema:name Institut Eurecom, CMM, 2229 route des Crêtes, B.P. 193, F-06904, Sophia Antipolis, Cedex, France
173 rdf:type schema:Organization
174 grid-institutes:grid.6054.7 schema:alternateName Computer Engineering Dept., Currently with 13 Centre of Mathematics and Computer Science (CWI), Formerly with Boğaziçi University, Kruislaan 413, 1090 GB, Amsterdam, The Netherlands
175 schema:name Computer Engineering Dept., Currently with 13 Centre of Mathematics and Computer Science (CWI), Formerly with Boğaziçi University, Kruislaan 413, 1090 GB, Amsterdam, The Netherlands
176 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...