Fisher Information in Ecological Systems View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2007

AUTHORS

B. Roy Frieden , Robert A. Gatenby

ABSTRACT

Fisher information is being increasingly used as a tool of research into ecological systems. For example the information was shown in Chapter 7 to provide a useful diagnostic of the health of an ecology. In other applications to ecology, extreme physical information (EPI) has been used to derive the population-rate (or Lotka-Volterra) equations of ecological systems, both directly [1] and indirectly (Chapter 5) via the quantum Schrodinger wave equation (SWE). We next build on these results, to derive (i) an uncertainty principle (8.3) of biology, (ii) a simple decision rule (8.18) for predicting whether a given ecology is susceptible to a sudden drop in population (Section 8.1), (iii) the probability law (8.57) or (8.59) on the worldwide occurrence of the masses of living creatures from mice to elephants and beyond (Section 8.2), and (iv) the famous quarter-power laws for the attributes of biological and other systems. The latter approach uses EPI to derive the simultaneous quarter-power behavior of all attributes obeyed by the law, such as metabolism rate, brain size, grazing range, etc. (Section 8.3). This maximal breadth of scope is allowed by its basis in information, which of course applies to all types of quantitative data (Section 1.4.3, Chapter 1). More... »

PAGES

245-284

Book

TITLE

Exploratory Data Analysis Using Fisher Information

ISBN

978-1-84628-506-6
978-1-84628-777-0

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-84628-777-0_8

DOI

http://dx.doi.org/10.1007/978-1-84628-777-0_8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003459078


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0602", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Ecology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Arizona", 
          "id": "https://www.grid.ac/institutes/grid.134563.6", 
          "name": [
            "College of Optics, University of Arizona, 85721, Tucson, AZ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frieden", 
        "givenName": "B. Roy", 
        "id": "sg:person.014171145011.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014171145011.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Arizona", 
          "id": "https://www.grid.ac/institutes/grid.134563.6", 
          "name": [
            "Department of Radiology University Medical Center, University of Arizona, 85726, Tucson, AZ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gatenby", 
        "givenName": "Robert A.", 
        "id": "sg:person.01251663701.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251663701.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/35070500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003288121", 
          "https://doi.org/10.1038/35070500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35070500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003288121", 
          "https://doi.org/10.1038/35070500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/9781400874750", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008295198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-56699-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009913284", 
          "https://doi.org/10.1007/978-3-642-56699-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-56699-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009913284", 
          "https://doi.org/10.1007/978-3-642-56699-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2003.12.054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010685240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/290699a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015465671", 
          "https://doi.org/10.1038/290699a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-3647-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016023091", 
          "https://doi.org/10.1007/978-1-4899-3647-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-3647-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016023091", 
          "https://doi.org/10.1007/978-1-4899-3647-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.72.036101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017649640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.72.036101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017649640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.72.036101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017649640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1021454807474", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020078771", 
          "https://doi.org/10.1023/a:1021454807474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00384576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023787796", 
          "https://doi.org/10.1007/bf00384576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00384576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023787796", 
          "https://doi.org/10.1007/bf00384576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jtbi.2000.2199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024091641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-5193(83)90351-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025311330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0169-5347(94)90311-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025731281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/0012-9658(2000)081[3530:sdpibs]2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025962007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/03-9000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030832973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0630310100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043280585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.232715699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046085466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.014101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051707383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.014101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051707383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1809090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057823836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/285297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058595420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.49.2644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060716327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.49.2644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060716327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.49.4815", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060716577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.49.4815", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060716577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.52.2274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060718304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.52.2274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060718304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.54.257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060719733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.54.257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060719733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.54.4423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060719938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.54.4423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060719938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.60.48", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060724369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.60.48", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060724369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.61.r3303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060725404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.61.r3303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060725404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.180403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060827437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.180403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060827437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.11542058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062457472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.276.5309.122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062556216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3545707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070367634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3934/mbe.2005.2.43", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071741335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075080941", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9781139167826", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098662776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511524691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098667604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511542633", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098698368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511608551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098700762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511616907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098740592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511622670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098790557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9781118033067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106801793"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007", 
    "datePublishedReg": "2007-01-01", 
    "description": "Fisher information is being increasingly used as a tool of research into ecological systems. For example the information was shown in Chapter 7 to provide a useful diagnostic of the health of an ecology. In other applications to ecology, extreme physical information (EPI) has been used to derive the population-rate (or Lotka-Volterra) equations of ecological systems, both directly [1] and indirectly (Chapter 5) via the quantum Schrodinger wave equation (SWE). We next build on these results, to derive (i) an uncertainty principle (8.3) of biology, (ii) a simple decision rule (8.18) for predicting whether a given ecology is susceptible to a sudden drop in population (Section 8.1), (iii) the probability law (8.57) or (8.59) on the worldwide occurrence of the masses of living creatures from mice to elephants and beyond (Section 8.2), and (iv) the famous quarter-power laws for the attributes of biological and other systems. The latter approach uses EPI to derive the simultaneous quarter-power behavior of all attributes obeyed by the law, such as metabolism rate, brain size, grazing range, etc. (Section 8.3). This maximal breadth of scope is allowed by its basis in information, which of course applies to all types of quantitative data (Section 1.4.3, Chapter 1).", 
    "editor": [
      {
        "familyName": "Frieden", 
        "givenName": "B. Roy", 
        "type": "Person"
      }, 
      {
        "familyName": "Gatenby", 
        "givenName": "Robert A.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-84628-777-0_8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-84628-506-6", 
        "978-1-84628-777-0"
      ], 
      "name": "Exploratory Data Analysis Using Fisher Information", 
      "type": "Book"
    }, 
    "name": "Fisher Information in Ecological Systems", 
    "pagination": "245-284", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003459078"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-84628-777-0_8"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "107a4377c32e8402c42f6c033bff637e1568193223b1b4515442458ba6a8b7a1"
        ]
      }
    ], 
    "publisher": {
      "location": "London", 
      "name": "Springer London", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-84628-777-0_8", 
      "https://app.dimensions.ai/details/publication/pub.1003459078"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29212_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-1-84628-777-0_8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-84628-777-0_8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-84628-777-0_8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-84628-777-0_8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-84628-777-0_8'


 

This table displays all metadata directly associated to this object as RDF triples.

200 TRIPLES      23 PREDICATES      66 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-84628-777-0_8 schema:about anzsrc-for:06
2 anzsrc-for:0602
3 schema:author N5cdfdbe5c3f045fcbad649e0a9be4652
4 schema:citation sg:pub.10.1007/978-1-4899-3647-9
5 sg:pub.10.1007/978-3-642-56699-8
6 sg:pub.10.1007/bf00384576
7 sg:pub.10.1023/a:1021454807474
8 sg:pub.10.1038/290699a0
9 sg:pub.10.1038/35070500
10 https://app.dimensions.ai/details/publication/pub.1075080941
11 https://doi.org/10.1002/9781118033067
12 https://doi.org/10.1006/jtbi.2000.2199
13 https://doi.org/10.1016/0022-5193(83)90351-x
14 https://doi.org/10.1016/0169-5347(94)90311-5
15 https://doi.org/10.1016/j.physleta.2003.12.054
16 https://doi.org/10.1017/cbo9780511524691
17 https://doi.org/10.1017/cbo9780511542633
18 https://doi.org/10.1017/cbo9780511608551
19 https://doi.org/10.1017/cbo9780511616907
20 https://doi.org/10.1017/cbo9780511622670
21 https://doi.org/10.1017/cbo9781139167826
22 https://doi.org/10.1063/1.1809090
23 https://doi.org/10.1073/pnas.0630310100
24 https://doi.org/10.1073/pnas.232715699
25 https://doi.org/10.1086/285297
26 https://doi.org/10.1103/physreve.49.2644
27 https://doi.org/10.1103/physreve.49.4815
28 https://doi.org/10.1103/physreve.52.2274
29 https://doi.org/10.1103/physreve.54.257
30 https://doi.org/10.1103/physreve.54.4423
31 https://doi.org/10.1103/physreve.60.48
32 https://doi.org/10.1103/physreve.61.r3303
33 https://doi.org/10.1103/physreve.72.036101
34 https://doi.org/10.1103/physrevlett.91.014101
35 https://doi.org/10.1103/physrevlett.91.180403
36 https://doi.org/10.1126/science.11542058
37 https://doi.org/10.1126/science.276.5309.122
38 https://doi.org/10.1515/9781400874750
39 https://doi.org/10.1890/0012-9658(2000)081[3530:sdpibs]2.0.co;2
40 https://doi.org/10.1890/03-9000
41 https://doi.org/10.2307/3545707
42 https://doi.org/10.3934/mbe.2005.2.43
43 schema:datePublished 2007
44 schema:datePublishedReg 2007-01-01
45 schema:description Fisher information is being increasingly used as a tool of research into ecological systems. For example the information was shown in Chapter 7 to provide a useful diagnostic of the health of an ecology. In other applications to ecology, extreme physical information (EPI) has been used to derive the population-rate (or Lotka-Volterra) equations of ecological systems, both directly [1] and indirectly (Chapter 5) via the quantum Schrodinger wave equation (SWE). We next build on these results, to derive (i) an uncertainty principle (8.3) of biology, (ii) a simple decision rule (8.18) for predicting whether a given ecology is susceptible to a sudden drop in population (Section 8.1), (iii) the probability law (8.57) or (8.59) on the worldwide occurrence of the masses of living creatures from mice to elephants and beyond (Section 8.2), and (iv) the famous quarter-power laws for the attributes of biological and other systems. The latter approach uses EPI to derive the simultaneous quarter-power behavior of all attributes obeyed by the law, such as metabolism rate, brain size, grazing range, etc. (Section 8.3). This maximal breadth of scope is allowed by its basis in information, which of course applies to all types of quantitative data (Section 1.4.3, Chapter 1).
46 schema:editor Nc59a98db85b24669a8e9becf1e7f5efe
47 schema:genre chapter
48 schema:inLanguage en
49 schema:isAccessibleForFree false
50 schema:isPartOf N67be186a0bac4e6e9211a643db8ea30f
51 schema:name Fisher Information in Ecological Systems
52 schema:pagination 245-284
53 schema:productId N0e668a8ec385486c9ed9def8a1f8c42d
54 N329bb694640f4d718cfeef7bc0db793c
55 N488ce40d87d748058b06b3d3ca95c37b
56 schema:publisher N13067e8f6abf458c9a56e0c7053d5b3f
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003459078
58 https://doi.org/10.1007/978-1-84628-777-0_8
59 schema:sdDatePublished 2019-04-16T08:03
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher Nd4f797d8988049ffbfbadc4682cda2f8
62 schema:url https://link.springer.com/10.1007%2F978-1-84628-777-0_8
63 sgo:license sg:explorer/license/
64 sgo:sdDataset chapters
65 rdf:type schema:Chapter
66 N00fb71cb48174d83a0a0f9c0a0a46662 rdf:first sg:person.01251663701.28
67 rdf:rest rdf:nil
68 N0e668a8ec385486c9ed9def8a1f8c42d schema:name readcube_id
69 schema:value 107a4377c32e8402c42f6c033bff637e1568193223b1b4515442458ba6a8b7a1
70 rdf:type schema:PropertyValue
71 N13067e8f6abf458c9a56e0c7053d5b3f schema:location London
72 schema:name Springer London
73 rdf:type schema:Organisation
74 N329bb694640f4d718cfeef7bc0db793c schema:name doi
75 schema:value 10.1007/978-1-84628-777-0_8
76 rdf:type schema:PropertyValue
77 N488ce40d87d748058b06b3d3ca95c37b schema:name dimensions_id
78 schema:value pub.1003459078
79 rdf:type schema:PropertyValue
80 N499b5ebf2b4a4ba59b5cc7c20e2edb00 schema:familyName Frieden
81 schema:givenName B. Roy
82 rdf:type schema:Person
83 N5cdfdbe5c3f045fcbad649e0a9be4652 rdf:first sg:person.014171145011.85
84 rdf:rest N00fb71cb48174d83a0a0f9c0a0a46662
85 N67be186a0bac4e6e9211a643db8ea30f schema:isbn 978-1-84628-506-6
86 978-1-84628-777-0
87 schema:name Exploratory Data Analysis Using Fisher Information
88 rdf:type schema:Book
89 N837baef4581d48429204b674ce42f92e rdf:first N8db2355710ec44a2b617e3d4826790bf
90 rdf:rest rdf:nil
91 N8db2355710ec44a2b617e3d4826790bf schema:familyName Gatenby
92 schema:givenName Robert A.
93 rdf:type schema:Person
94 Nc59a98db85b24669a8e9becf1e7f5efe rdf:first N499b5ebf2b4a4ba59b5cc7c20e2edb00
95 rdf:rest N837baef4581d48429204b674ce42f92e
96 Nd4f797d8988049ffbfbadc4682cda2f8 schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
99 schema:name Biological Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0602 schema:inDefinedTermSet anzsrc-for:
102 schema:name Ecology
103 rdf:type schema:DefinedTerm
104 sg:person.01251663701.28 schema:affiliation https://www.grid.ac/institutes/grid.134563.6
105 schema:familyName Gatenby
106 schema:givenName Robert A.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251663701.28
108 rdf:type schema:Person
109 sg:person.014171145011.85 schema:affiliation https://www.grid.ac/institutes/grid.134563.6
110 schema:familyName Frieden
111 schema:givenName B. Roy
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014171145011.85
113 rdf:type schema:Person
114 sg:pub.10.1007/978-1-4899-3647-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016023091
115 https://doi.org/10.1007/978-1-4899-3647-9
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/978-3-642-56699-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009913284
118 https://doi.org/10.1007/978-3-642-56699-8
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/bf00384576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023787796
121 https://doi.org/10.1007/bf00384576
122 rdf:type schema:CreativeWork
123 sg:pub.10.1023/a:1021454807474 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020078771
124 https://doi.org/10.1023/a:1021454807474
125 rdf:type schema:CreativeWork
126 sg:pub.10.1038/290699a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015465671
127 https://doi.org/10.1038/290699a0
128 rdf:type schema:CreativeWork
129 sg:pub.10.1038/35070500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003288121
130 https://doi.org/10.1038/35070500
131 rdf:type schema:CreativeWork
132 https://app.dimensions.ai/details/publication/pub.1075080941 schema:CreativeWork
133 https://doi.org/10.1002/9781118033067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106801793
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1006/jtbi.2000.2199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024091641
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/0022-5193(83)90351-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025311330
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/0169-5347(94)90311-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025731281
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.physleta.2003.12.054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010685240
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1017/cbo9780511524691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098667604
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1017/cbo9780511542633 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098698368
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1017/cbo9780511608551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098700762
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1017/cbo9780511616907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098740592
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1017/cbo9780511622670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098790557
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1017/cbo9781139167826 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098662776
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1063/1.1809090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057823836
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1073/pnas.0630310100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043280585
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1073/pnas.232715699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046085466
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1086/285297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058595420
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physreve.49.2644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060716327
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/physreve.49.4815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060716577
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/physreve.52.2274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060718304
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1103/physreve.54.257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060719733
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physreve.54.4423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060719938
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physreve.60.48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060724369
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physreve.61.r3303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060725404
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/physreve.72.036101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017649640
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1103/physrevlett.91.014101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051707383
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1103/physrevlett.91.180403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060827437
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1126/science.11542058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062457472
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1126/science.276.5309.122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062556216
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1515/9781400874750 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008295198
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1890/0012-9658(2000)081[3530:sdpibs]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025962007
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1890/03-9000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030832973
192 rdf:type schema:CreativeWork
193 https://doi.org/10.2307/3545707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070367634
194 rdf:type schema:CreativeWork
195 https://doi.org/10.3934/mbe.2005.2.43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071741335
196 rdf:type schema:CreativeWork
197 https://www.grid.ac/institutes/grid.134563.6 schema:alternateName University of Arizona
198 schema:name College of Optics, University of Arizona, 85721, Tucson, AZ, USA
199 Department of Radiology University Medical Center, University of Arizona, 85726, Tucson, AZ, USA
200 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...