Complexity of Magnetic Resonance Spectrum Classification View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2006-01-01

AUTHORS

Richard Baumgartner , Tin Kam Ho , Ray Somorjai , Uwe Himmelreich , Tania Sorrell

ABSTRACT

We use several data complexity measures to explain the differences in classification accuracy using various sets of features selected from samples of magnetic resonance spectra for two-class discrimination. Results suggest that for this typical problem with sparse samples in a high-dimensional space, even robust classifiers like random decision forests can benefit from sophisticated feature selection procedures, and the improvement can be explained by the more favorable characteristics in the class geometry given by the resultant feature sets. More... »

PAGES

241-248

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-84628-172-3_12

DOI

http://dx.doi.org/10.1007/978-1-84628-172-3_12

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009550913


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Biodiagnostics, National Research Council Canada, 435 Ellice Avenue, R3B 1Y6, Winnipeg, Manitoba, Canada", 
          "id": "http://www.grid.ac/institutes/grid.418618.2", 
          "name": [
            "Institute for Biodiagnostics, National Research Council Canada, 435 Ellice Avenue, R3B 1Y6, Winnipeg, Manitoba, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baumgartner", 
        "givenName": "Richard", 
        "id": "sg:person.01151667763.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151667763.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mathematical & Algorithmic Sciences Research Center, Bell Laboratories, Lucent Technologies, 07974-0636, Murray Hill, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.469490.6", 
          "name": [
            "Mathematical & Algorithmic Sciences Research Center, Bell Laboratories, Lucent Technologies, 07974-0636, Murray Hill, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kam Ho", 
        "givenName": "Tin", 
        "id": "sg:person.011002343545.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011002343545.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Biodiagnostics, National Research Council Canada, 435 Ellice Avenue, R3B 1Y6, Winnipeg, Manitoba, Canada", 
          "id": "http://www.grid.ac/institutes/grid.418618.2", 
          "name": [
            "Institute for Biodiagnostics, National Research Council Canada, 435 Ellice Avenue, R3B 1Y6, Winnipeg, Manitoba, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Somorjai", 
        "givenName": "Ray", 
        "id": "sg:person.0775001330.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775001330.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Magnetic Resonance Research, Department of Magnetic Resonance in Medicine, University of Sydney, 2145, Sydney, NSW, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1013.3", 
          "name": [
            "Institute for Magnetic Resonance Research, Department of Magnetic Resonance in Medicine, University of Sydney, 2145, Sydney, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Himmelreich", 
        "givenName": "Uwe", 
        "id": "sg:person.01251262243.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251262243.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre for Infectious Diseases and Microbiology, University of Sydney at Westmead, 2145, Westmead, NSW, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1013.3", 
          "name": [
            "Centre for Infectious Diseases and Microbiology, University of Sydney at Westmead, 2145, Westmead, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sorrell", 
        "givenName": "Tania", 
        "id": "sg:person.01003151017.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003151017.13"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2006-01-01", 
    "datePublishedReg": "2006-01-01", 
    "description": "We use several data complexity measures to explain the differences in classification accuracy using various sets of features selected from samples of magnetic resonance spectra for two-class discrimination. Results suggest that for this typical problem with sparse samples in a high-dimensional space, even robust classifiers like random decision forests can benefit from sophisticated feature selection procedures, and the improvement can be explained by the more favorable characteristics in the class geometry given by the resultant feature sets.", 
    "editor": [
      {
        "familyName": "Basu", 
        "givenName": "Mitra", 
        "type": "Person"
      }, 
      {
        "familyName": "Ho", 
        "givenName": "Tin Kam", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-84628-172-3_12", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-84628-171-6", 
        "978-1-84628-172-3"
      ], 
      "name": "Data Complexity in Pattern Recognition", 
      "type": "Book"
    }, 
    "keywords": [
      "high-dimensional space", 
      "resultant feature set", 
      "complexity measures", 
      "typical problems", 
      "sparse samples", 
      "data complexity measures", 
      "random decision forest", 
      "selection procedure", 
      "feature selection procedure", 
      "set", 
      "spectra classification", 
      "geometry", 
      "space", 
      "robust classifier", 
      "resonance spectra", 
      "problem", 
      "decision forest", 
      "complexity", 
      "two-class discrimination", 
      "set of features", 
      "accuracy", 
      "magnetic resonance spectra", 
      "classification accuracy", 
      "spectra", 
      "feature sets", 
      "procedure", 
      "results", 
      "features", 
      "favorable characteristics", 
      "characteristics", 
      "classification", 
      "measures", 
      "samples", 
      "classifier", 
      "improvement", 
      "differences", 
      "discrimination", 
      "forest"
    ], 
    "name": "Complexity of Magnetic Resonance Spectrum Classification", 
    "pagination": "241-248", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009550913"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-84628-172-3_12"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-84628-172-3_12", 
      "https://app.dimensions.ai/details/publication/pub.1009550913"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_213.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-84628-172-3_12"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-84628-172-3_12'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-84628-172-3_12'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-84628-172-3_12'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-84628-172-3_12'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      22 PREDICATES      62 URIs      55 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-84628-172-3_12 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N1ab25db90711485ba4ce9ba34573592b
4 schema:datePublished 2006-01-01
5 schema:datePublishedReg 2006-01-01
6 schema:description We use several data complexity measures to explain the differences in classification accuracy using various sets of features selected from samples of magnetic resonance spectra for two-class discrimination. Results suggest that for this typical problem with sparse samples in a high-dimensional space, even robust classifiers like random decision forests can benefit from sophisticated feature selection procedures, and the improvement can be explained by the more favorable characteristics in the class geometry given by the resultant feature sets.
7 schema:editor Ndcba4d1b746b47129064b775e22b6dfd
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf Nfa6c69fe3e1b4ce7a84db72b4e997e05
11 schema:keywords accuracy
12 characteristics
13 classification
14 classification accuracy
15 classifier
16 complexity
17 complexity measures
18 data complexity measures
19 decision forest
20 differences
21 discrimination
22 favorable characteristics
23 feature selection procedure
24 feature sets
25 features
26 forest
27 geometry
28 high-dimensional space
29 improvement
30 magnetic resonance spectra
31 measures
32 problem
33 procedure
34 random decision forest
35 resonance spectra
36 resultant feature set
37 results
38 robust classifier
39 samples
40 selection procedure
41 set
42 set of features
43 space
44 sparse samples
45 spectra
46 spectra classification
47 two-class discrimination
48 typical problems
49 schema:name Complexity of Magnetic Resonance Spectrum Classification
50 schema:pagination 241-248
51 schema:productId N501073c63cc942d4ae5edbfcbf119a97
52 N893ee864c63d44d7bea7578b07433d1f
53 schema:publisher Nc4cbbf2aca4a4da6ac3bca8a6c4ec89a
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009550913
55 https://doi.org/10.1007/978-1-84628-172-3_12
56 schema:sdDatePublished 2022-12-01T06:48
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N0106907c2fd1472ea4e4c2f6da922b50
59 schema:url https://doi.org/10.1007/978-1-84628-172-3_12
60 sgo:license sg:explorer/license/
61 sgo:sdDataset chapters
62 rdf:type schema:Chapter
63 N0106907c2fd1472ea4e4c2f6da922b50 schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 N0efa73defa92432b8062dbdf66ca7129 schema:familyName Ho
66 schema:givenName Tin Kam
67 rdf:type schema:Person
68 N10b4998c55744798a50a3689f675d5e6 rdf:first sg:person.0775001330.39
69 rdf:rest N48ec8940f3504a7bbdf5e6f8e6b59030
70 N1ab25db90711485ba4ce9ba34573592b rdf:first sg:person.01151667763.85
71 rdf:rest Nd9860858dd1b471393dc22834e422982
72 N247f0bb156294d40ba6979826ba95b1d rdf:first N0efa73defa92432b8062dbdf66ca7129
73 rdf:rest rdf:nil
74 N48ec8940f3504a7bbdf5e6f8e6b59030 rdf:first sg:person.01251262243.56
75 rdf:rest Nc4157dd80f5745d8b06202f53d21f2e3
76 N501073c63cc942d4ae5edbfcbf119a97 schema:name doi
77 schema:value 10.1007/978-1-84628-172-3_12
78 rdf:type schema:PropertyValue
79 N893ee864c63d44d7bea7578b07433d1f schema:name dimensions_id
80 schema:value pub.1009550913
81 rdf:type schema:PropertyValue
82 Nc4157dd80f5745d8b06202f53d21f2e3 rdf:first sg:person.01003151017.13
83 rdf:rest rdf:nil
84 Nc4cbbf2aca4a4da6ac3bca8a6c4ec89a schema:name Springer Nature
85 rdf:type schema:Organisation
86 Nd4c3ead8a7d04b03bf1141547b203f1f schema:familyName Basu
87 schema:givenName Mitra
88 rdf:type schema:Person
89 Nd9860858dd1b471393dc22834e422982 rdf:first sg:person.011002343545.28
90 rdf:rest N10b4998c55744798a50a3689f675d5e6
91 Ndcba4d1b746b47129064b775e22b6dfd rdf:first Nd4c3ead8a7d04b03bf1141547b203f1f
92 rdf:rest N247f0bb156294d40ba6979826ba95b1d
93 Nfa6c69fe3e1b4ce7a84db72b4e997e05 schema:isbn 978-1-84628-171-6
94 978-1-84628-172-3
95 schema:name Data Complexity in Pattern Recognition
96 rdf:type schema:Book
97 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
98 schema:name Mathematical Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
101 schema:name Statistics
102 rdf:type schema:DefinedTerm
103 sg:person.01003151017.13 schema:affiliation grid-institutes:grid.1013.3
104 schema:familyName Sorrell
105 schema:givenName Tania
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003151017.13
107 rdf:type schema:Person
108 sg:person.011002343545.28 schema:affiliation grid-institutes:grid.469490.6
109 schema:familyName Kam Ho
110 schema:givenName Tin
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011002343545.28
112 rdf:type schema:Person
113 sg:person.01151667763.85 schema:affiliation grid-institutes:grid.418618.2
114 schema:familyName Baumgartner
115 schema:givenName Richard
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151667763.85
117 rdf:type schema:Person
118 sg:person.01251262243.56 schema:affiliation grid-institutes:grid.1013.3
119 schema:familyName Himmelreich
120 schema:givenName Uwe
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251262243.56
122 rdf:type schema:Person
123 sg:person.0775001330.39 schema:affiliation grid-institutes:grid.418618.2
124 schema:familyName Somorjai
125 schema:givenName Ray
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775001330.39
127 rdf:type schema:Person
128 grid-institutes:grid.1013.3 schema:alternateName Centre for Infectious Diseases and Microbiology, University of Sydney at Westmead, 2145, Westmead, NSW, Australia
129 Institute for Magnetic Resonance Research, Department of Magnetic Resonance in Medicine, University of Sydney, 2145, Sydney, NSW, Australia
130 schema:name Centre for Infectious Diseases and Microbiology, University of Sydney at Westmead, 2145, Westmead, NSW, Australia
131 Institute for Magnetic Resonance Research, Department of Magnetic Resonance in Medicine, University of Sydney, 2145, Sydney, NSW, Australia
132 rdf:type schema:Organization
133 grid-institutes:grid.418618.2 schema:alternateName Institute for Biodiagnostics, National Research Council Canada, 435 Ellice Avenue, R3B 1Y6, Winnipeg, Manitoba, Canada
134 schema:name Institute for Biodiagnostics, National Research Council Canada, 435 Ellice Avenue, R3B 1Y6, Winnipeg, Manitoba, Canada
135 rdf:type schema:Organization
136 grid-institutes:grid.469490.6 schema:alternateName Mathematical & Algorithmic Sciences Research Center, Bell Laboratories, Lucent Technologies, 07974-0636, Murray Hill, NJ, USA
137 schema:name Mathematical & Algorithmic Sciences Research Center, Bell Laboratories, Lucent Technologies, 07974-0636, Murray Hill, NJ, USA
138 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...