13C-Based Metabolic Flux Analysis: Fundamentals and Practice View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2013

AUTHORS

Tae Hoon Yang

ABSTRACT

Isotope-based metabolic flux analysis is one of the emerging technologies applied to system level metabolic phenotype characterization in metabolic engineering. Among the developed approaches, (13)C-based metabolic flux analysis has been established as a standard tool and has been widely applied to quantitative pathway characterization of diverse biological systems. To implement (13)C-based metabolic flux analysis in practice, comprehending the underlying mathematical and computational modeling fundamentals is of importance along with carefully conducted experiments and analytical measurements. Such knowledge is also crucial when designing (13)C-labeling experiments and properly acquiring key data sets essential for in vivo flux analysis implementation. In this regard, the modeling fundamentals of (13)C-labeling systems and analytical data processing are the main topics we will deal with in this chapter. Along with this, the relevant numerical optimization techniques are addressed to help implementation of the entire computational procedures aiming at (13)C-based metabolic flux analysis in vivo. More... »

PAGES

297-334

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-62703-299-5_15

DOI

http://dx.doi.org/10.1007/978-1-62703-299-5_15

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047053327

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23417810


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carbohydrate Metabolism", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carbon Radioisotopes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cells, Cultured", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Isotope Labeling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metabolic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Genomatica (United States)", 
          "id": "https://www.grid.ac/institutes/grid.420355.5", 
          "name": [
            "Genomatica, Inc., San Diego, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Tae Hoon", 
        "id": "sg:person.0674741700.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674741700.24"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.compbiolchem.2005.02.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000159546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0290(1999)66:2<86::aid-bit2>3.0.co;2-a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003373695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchembio.580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004383796", 
          "https://doi.org/10.1038/nchembio.580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.10909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004942481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007078287", 
          "https://doi.org/10.1186/1471-2105-9-152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007078287", 
          "https://doi.org/10.1186/1471-2105-9-152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/mben.2001.0187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009229172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbiotec.2006.11.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009892971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jprocont.2005.11.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009942869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-1656(99)00021-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010023637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bp00029a006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010711822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.1262503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011356568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymben.2006.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013160347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymben.2006.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014502509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b98874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015038119", 
          "https://doi.org/10.1007/b98874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b98874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015038119", 
          "https://doi.org/10.1007/b98874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b98874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015038119", 
          "https://doi.org/10.1007/b98874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0377-0427(02)00878-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015792622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0377-0427(02)00878-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015792622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017740573", 
          "https://doi.org/10.1186/1471-2105-6-209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0290(19970705)55:1<118::aid-bit13>3.0.co;2-i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019657373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymben.2007.01.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019765314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymben.2007.01.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019765314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj2580121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020001065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj2580121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020001065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac900999t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022299191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac900999t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022299191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymben.2003.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022632349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymben.2003.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022632349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/mben.1999.0117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022845199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1475-2859-6-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023293392", 
          "https://doi.org/10.1186/1475-2859-6-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bms.1200210210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024599725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bms.1200210210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024599725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ab.2009.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024710624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1096-9888(199603)31:3<255::aid-jms290>3.0.co;2-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024922079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac070470c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024998327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac070470c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024998327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-266", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026410216", 
          "https://doi.org/10.1186/1471-2105-9-266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00169949", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027979470", 
          "https://doi.org/10.1007/bf00169949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00169949", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027979470", 
          "https://doi.org/10.1007/bf00169949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ab.2005.01.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028973618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac0708893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031639562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac0708893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031639562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1475-2859-9-90", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033422743", 
          "https://doi.org/10.1186/1475-2859-9-90"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0038-092x(99)00040-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033714702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymben.2006.01.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034065856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b98921", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034799297", 
          "https://doi.org/10.1007/b98921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.21632", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035609794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.21632", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035609794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.10393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035769242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1432-1033.2003.03448.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035855874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1432-1033.2002.02959.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036469541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1745-6584.2003.tb02376.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036935118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1745-6584.2003.tb02376.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036935118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymben.2010.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038522947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0290(19970920)55:6<831::aid-bit2>3.0.co;2-h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039569952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0290(1999)66:2<69::aid-bit1>3.0.co;2-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039802414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cam.2006.03.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040046244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj2120585", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040153879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj2120585", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040153879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/9781400862528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040993678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.23070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042768407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymben.2011.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043406779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1752-0509-2-29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044662272", 
          "https://doi.org/10.1186/1752-0509-2-29"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1752-0509-5-129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049745580", 
          "https://doi.org/10.1186/1752-0509-5-129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/14.10.869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050074049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac061906b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054998781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac061906b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054998781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac0623888", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054998968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac0623888", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054998968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.556031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058109903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.1504847", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062071164"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": "Isotope-based metabolic flux analysis is one of the emerging technologies applied to system level metabolic phenotype characterization in metabolic engineering. Among the developed approaches, (13)C-based metabolic flux analysis has been established as a standard tool and has been widely applied to quantitative pathway characterization of diverse biological systems. To implement (13)C-based metabolic flux analysis in practice, comprehending the underlying mathematical and computational modeling fundamentals is of importance along with carefully conducted experiments and analytical measurements. Such knowledge is also crucial when designing (13)C-labeling experiments and properly acquiring key data sets essential for in vivo flux analysis implementation. In this regard, the modeling fundamentals of (13)C-labeling systems and analytical data processing are the main topics we will deal with in this chapter. Along with this, the relevant numerical optimization techniques are addressed to help implementation of the entire computational procedures aiming at (13)C-based metabolic flux analysis in vivo.", 
    "editor": [
      {
        "familyName": "Alper", 
        "givenName": "Hal S.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-62703-299-5_15", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-62703-298-8", 
        "978-1-62703-299-5"
      ], 
      "name": "Systems Metabolic Engineering", 
      "type": "Book"
    }, 
    "name": "13C-Based Metabolic Flux Analysis: Fundamentals and Practice", 
    "pagination": "297-334", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-62703-299-5_15"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e025c91752b4065feda6a376d94272dd6b99deb4859a24023ffd43d3c5a1022f"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047053327"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23417810"
        ]
      }
    ], 
    "publisher": {
      "location": "Totowa, NJ", 
      "name": "Humana Press", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-62703-299-5_15", 
      "https://app.dimensions.ai/details/publication/pub.1047053327"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T10:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000272.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-1-62703-299-5_15"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-62703-299-5_15'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-62703-299-5_15'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-62703-299-5_15'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-62703-299-5_15'


 

This table displays all metadata directly associated to this object as RDF triples.

277 TRIPLES      23 PREDICATES      91 URIs      29 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-62703-299-5_15 schema:about N2d5a14dd4fb64e93a06e9921ff616b34
2 N6700ac64bbfb496d99dcee664eaa5831
3 N760f1d647bfe4eaa8f0b0cccc1d4e9cb
4 N8881e54aecab47148a3da607cf9336e7
5 Nc4b0dbe67181457fa37dad1c1136b10e
6 Nce71228d4eb94e6b9dd8a0384cadfe65
7 Ne1e2373c716943bb8ed3832fcaf74a48
8 Nf7158e34ec3e454f9599b44385c19ac7
9 anzsrc-for:08
10 anzsrc-for:0801
11 schema:author N99dd2a4ca80a41a8a07bde96a3d028dc
12 schema:citation sg:pub.10.1007/b98874
13 sg:pub.10.1007/b98921
14 sg:pub.10.1007/bf00169949
15 sg:pub.10.1038/nchembio.580
16 sg:pub.10.1186/1471-2105-6-209
17 sg:pub.10.1186/1471-2105-9-152
18 sg:pub.10.1186/1471-2105-9-266
19 sg:pub.10.1186/1475-2859-6-6
20 sg:pub.10.1186/1475-2859-9-90
21 sg:pub.10.1186/1752-0509-2-29
22 sg:pub.10.1186/1752-0509-5-129
23 https://doi.org/10.1002/(sici)1096-9888(199603)31:3<255::aid-jms290>3.0.co;2-3
24 https://doi.org/10.1002/(sici)1097-0290(19970705)55:1<118::aid-bit13>3.0.co;2-i
25 https://doi.org/10.1002/(sici)1097-0290(19970920)55:6<831::aid-bit2>3.0.co;2-h
26 https://doi.org/10.1002/(sici)1097-0290(1999)66:2<69::aid-bit1>3.0.co;2-6
27 https://doi.org/10.1002/(sici)1097-0290(1999)66:2<86::aid-bit2>3.0.co;2-a
28 https://doi.org/10.1002/bit.10393
29 https://doi.org/10.1002/bit.10909
30 https://doi.org/10.1002/bit.21632
31 https://doi.org/10.1002/bit.23070
32 https://doi.org/10.1002/bms.1200210210
33 https://doi.org/10.1006/mben.1999.0117
34 https://doi.org/10.1006/mben.2001.0187
35 https://doi.org/10.1016/j.ab.2005.01.027
36 https://doi.org/10.1016/j.ab.2009.03.005
37 https://doi.org/10.1016/j.cam.2006.03.048
38 https://doi.org/10.1016/j.compbiolchem.2005.02.005
39 https://doi.org/10.1016/j.jbiotec.2006.11.015
40 https://doi.org/10.1016/j.jprocont.2005.11.001
41 https://doi.org/10.1016/j.ymben.2003.09.002
42 https://doi.org/10.1016/j.ymben.2006.01.004
43 https://doi.org/10.1016/j.ymben.2006.03.002
44 https://doi.org/10.1016/j.ymben.2006.09.001
45 https://doi.org/10.1016/j.ymben.2007.01.003
46 https://doi.org/10.1016/j.ymben.2010.11.006
47 https://doi.org/10.1016/j.ymben.2011.08.002
48 https://doi.org/10.1016/s0038-092x(99)00040-7
49 https://doi.org/10.1016/s0168-1656(99)00021-8
50 https://doi.org/10.1016/s0377-0427(02)00878-6
51 https://doi.org/10.1021/ac061906b
52 https://doi.org/10.1021/ac0623888
53 https://doi.org/10.1021/ac070470c
54 https://doi.org/10.1021/ac0708893
55 https://doi.org/10.1021/ac900999t
56 https://doi.org/10.1021/bp00029a006
57 https://doi.org/10.1042/bj2120585
58 https://doi.org/10.1042/bj2580121
59 https://doi.org/10.1046/j.1432-1033.2002.02959.x
60 https://doi.org/10.1046/j.1432-1033.2003.03448.x
61 https://doi.org/10.1063/1.556031
62 https://doi.org/10.1093/bioinformatics/14.10.869
63 https://doi.org/10.1101/gr.1262503
64 https://doi.org/10.1111/j.1745-6584.2003.tb02376.x
65 https://doi.org/10.1115/1.1504847
66 https://doi.org/10.1515/9781400862528
67 schema:datePublished 2013
68 schema:datePublishedReg 2013-01-01
69 schema:description Isotope-based metabolic flux analysis is one of the emerging technologies applied to system level metabolic phenotype characterization in metabolic engineering. Among the developed approaches, (13)C-based metabolic flux analysis has been established as a standard tool and has been widely applied to quantitative pathway characterization of diverse biological systems. To implement (13)C-based metabolic flux analysis in practice, comprehending the underlying mathematical and computational modeling fundamentals is of importance along with carefully conducted experiments and analytical measurements. Such knowledge is also crucial when designing (13)C-labeling experiments and properly acquiring key data sets essential for in vivo flux analysis implementation. In this regard, the modeling fundamentals of (13)C-labeling systems and analytical data processing are the main topics we will deal with in this chapter. Along with this, the relevant numerical optimization techniques are addressed to help implementation of the entire computational procedures aiming at (13)C-based metabolic flux analysis in vivo.
70 schema:editor N44f6f5b7e61147a08227d4093538f5a4
71 schema:genre chapter
72 schema:inLanguage en
73 schema:isAccessibleForFree false
74 schema:isPartOf Ndc178037ae0d4aadbdc5eb4361fe989b
75 schema:name 13C-Based Metabolic Flux Analysis: Fundamentals and Practice
76 schema:pagination 297-334
77 schema:productId N1004f36b81de40b8830d1053f786f0c3
78 N41a7563d309b4f6799ca840a4e3a8b74
79 N7f327bc6d6a945209fc738bdaffa0449
80 Neb13b96869e1498880ee008f1fad2cef
81 schema:publisher N2e6f566459fb478e9267e8e1fff899ba
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047053327
83 https://doi.org/10.1007/978-1-62703-299-5_15
84 schema:sdDatePublished 2019-04-15T10:37
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher N405b2538920e4004b820298a4e581bd3
87 schema:url http://link.springer.com/10.1007/978-1-62703-299-5_15
88 sgo:license sg:explorer/license/
89 sgo:sdDataset chapters
90 rdf:type schema:Chapter
91 N1004f36b81de40b8830d1053f786f0c3 schema:name dimensions_id
92 schema:value pub.1047053327
93 rdf:type schema:PropertyValue
94 N2d5a14dd4fb64e93a06e9921ff616b34 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Algorithms
96 rdf:type schema:DefinedTerm
97 N2e6f566459fb478e9267e8e1fff899ba schema:location Totowa, NJ
98 schema:name Humana Press
99 rdf:type schema:Organisation
100 N405b2538920e4004b820298a4e581bd3 schema:name Springer Nature - SN SciGraph project
101 rdf:type schema:Organization
102 N41a7563d309b4f6799ca840a4e3a8b74 schema:name pubmed_id
103 schema:value 23417810
104 rdf:type schema:PropertyValue
105 N44f6f5b7e61147a08227d4093538f5a4 rdf:first Nfff95d355f4943cd8be19486b2ca694a
106 rdf:rest rdf:nil
107 N6700ac64bbfb496d99dcee664eaa5831 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Carbohydrate Metabolism
109 rdf:type schema:DefinedTerm
110 N760f1d647bfe4eaa8f0b0cccc1d4e9cb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Computer Simulation
112 rdf:type schema:DefinedTerm
113 N7f327bc6d6a945209fc738bdaffa0449 schema:name doi
114 schema:value 10.1007/978-1-62703-299-5_15
115 rdf:type schema:PropertyValue
116 N8881e54aecab47148a3da607cf9336e7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Metabolic Engineering
118 rdf:type schema:DefinedTerm
119 N99dd2a4ca80a41a8a07bde96a3d028dc rdf:first sg:person.0674741700.24
120 rdf:rest rdf:nil
121 Nc4b0dbe67181457fa37dad1c1136b10e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Carbon Radioisotopes
123 rdf:type schema:DefinedTerm
124 Nce71228d4eb94e6b9dd8a0384cadfe65 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Isotope Labeling
126 rdf:type schema:DefinedTerm
127 Ndc178037ae0d4aadbdc5eb4361fe989b schema:isbn 978-1-62703-298-8
128 978-1-62703-299-5
129 schema:name Systems Metabolic Engineering
130 rdf:type schema:Book
131 Ne1e2373c716943bb8ed3832fcaf74a48 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Models, Biological
133 rdf:type schema:DefinedTerm
134 Neb13b96869e1498880ee008f1fad2cef schema:name readcube_id
135 schema:value e025c91752b4065feda6a376d94272dd6b99deb4859a24023ffd43d3c5a1022f
136 rdf:type schema:PropertyValue
137 Nf7158e34ec3e454f9599b44385c19ac7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Cells, Cultured
139 rdf:type schema:DefinedTerm
140 Nfff95d355f4943cd8be19486b2ca694a schema:familyName Alper
141 schema:givenName Hal S.
142 rdf:type schema:Person
143 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
144 schema:name Information and Computing Sciences
145 rdf:type schema:DefinedTerm
146 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
147 schema:name Artificial Intelligence and Image Processing
148 rdf:type schema:DefinedTerm
149 sg:person.0674741700.24 schema:affiliation https://www.grid.ac/institutes/grid.420355.5
150 schema:familyName Yang
151 schema:givenName Tae Hoon
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674741700.24
153 rdf:type schema:Person
154 sg:pub.10.1007/b98874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015038119
155 https://doi.org/10.1007/b98874
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/b98921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034799297
158 https://doi.org/10.1007/b98921
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/bf00169949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027979470
161 https://doi.org/10.1007/bf00169949
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/nchembio.580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004383796
164 https://doi.org/10.1038/nchembio.580
165 rdf:type schema:CreativeWork
166 sg:pub.10.1186/1471-2105-6-209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017740573
167 https://doi.org/10.1186/1471-2105-6-209
168 rdf:type schema:CreativeWork
169 sg:pub.10.1186/1471-2105-9-152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007078287
170 https://doi.org/10.1186/1471-2105-9-152
171 rdf:type schema:CreativeWork
172 sg:pub.10.1186/1471-2105-9-266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026410216
173 https://doi.org/10.1186/1471-2105-9-266
174 rdf:type schema:CreativeWork
175 sg:pub.10.1186/1475-2859-6-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023293392
176 https://doi.org/10.1186/1475-2859-6-6
177 rdf:type schema:CreativeWork
178 sg:pub.10.1186/1475-2859-9-90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033422743
179 https://doi.org/10.1186/1475-2859-9-90
180 rdf:type schema:CreativeWork
181 sg:pub.10.1186/1752-0509-2-29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044662272
182 https://doi.org/10.1186/1752-0509-2-29
183 rdf:type schema:CreativeWork
184 sg:pub.10.1186/1752-0509-5-129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049745580
185 https://doi.org/10.1186/1752-0509-5-129
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1002/(sici)1096-9888(199603)31:3<255::aid-jms290>3.0.co;2-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024922079
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1002/(sici)1097-0290(19970705)55:1<118::aid-bit13>3.0.co;2-i schema:sameAs https://app.dimensions.ai/details/publication/pub.1019657373
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1002/(sici)1097-0290(19970920)55:6<831::aid-bit2>3.0.co;2-h schema:sameAs https://app.dimensions.ai/details/publication/pub.1039569952
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1002/(sici)1097-0290(1999)66:2<69::aid-bit1>3.0.co;2-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039802414
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1002/(sici)1097-0290(1999)66:2<86::aid-bit2>3.0.co;2-a schema:sameAs https://app.dimensions.ai/details/publication/pub.1003373695
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1002/bit.10393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035769242
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1002/bit.10909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004942481
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1002/bit.21632 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035609794
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1002/bit.23070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042768407
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1002/bms.1200210210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024599725
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1006/mben.1999.0117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022845199
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1006/mben.2001.0187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009229172
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/j.ab.2005.01.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028973618
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/j.ab.2009.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024710624
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/j.cam.2006.03.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040046244
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/j.compbiolchem.2005.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000159546
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1016/j.jbiotec.2006.11.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009892971
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1016/j.jprocont.2005.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009942869
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1016/j.ymben.2003.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022632349
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1016/j.ymben.2006.01.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034065856
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1016/j.ymben.2006.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013160347
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1016/j.ymben.2006.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014502509
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1016/j.ymben.2007.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019765314
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1016/j.ymben.2010.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038522947
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1016/j.ymben.2011.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043406779
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1016/s0038-092x(99)00040-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033714702
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1016/s0168-1656(99)00021-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010023637
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1016/s0377-0427(02)00878-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015792622
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1021/ac061906b schema:sameAs https://app.dimensions.ai/details/publication/pub.1054998781
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1021/ac0623888 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054998968
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1021/ac070470c schema:sameAs https://app.dimensions.ai/details/publication/pub.1024998327
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1021/ac0708893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031639562
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1021/ac900999t schema:sameAs https://app.dimensions.ai/details/publication/pub.1022299191
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1021/bp00029a006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010711822
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1042/bj2120585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040153879
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1042/bj2580121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020001065
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1046/j.1432-1033.2002.02959.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036469541
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1046/j.1432-1033.2003.03448.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035855874
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1063/1.556031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058109903
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1093/bioinformatics/14.10.869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050074049
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1101/gr.1262503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011356568
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1111/j.1745-6584.2003.tb02376.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036935118
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1115/1.1504847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062071164
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1515/9781400862528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040993678
274 rdf:type schema:CreativeWork
275 https://www.grid.ac/institutes/grid.420355.5 schema:alternateName Genomatica (United States)
276 schema:name Genomatica, Inc., San Diego, CA, USA
277 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...