Phenotypic and Physiological Evaluation for Drought and Salinity Stress Responses in Rice View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2012-10-11

AUTHORS

Utlwang Batlang , Niranjan Baisakh , Madana M. R. Ambavaram , Andy Pereira

ABSTRACT

Drought and salinity stresses seriously affect rice plant growth and yield. The growing need to improve rice cultivars for drought and salt tolerance requires the development of reproducible screening methods that simulate field conditions, and which provide quantitative data for statistical testing and selection of genotypes with differential responses. In addition, the study of molecular responses to drought and salt stress requires controlled conditions for growth and treatments that are reportable and comparable between different laboratories. Drought, also known as soil water deficit, can result from insufficient moisture for a plant to grow adequately and complete its life cycle. Salinity due to excess sodium chloride affects rice at seedling and flowering stages, reducing root and leaf growth. Both these abiotic stresses can lead to major physiological and biochemical changes such as reduced photosynthesis and reprogramming of gene expression. The methods presented in this chapter can be applied for (a) examination of stress responses in rice vegetative and reproductive tissues to identify and characterize molecular and physiological responses; (b) testing of candidate genes by overexpression or knockout studies evaluated for altered stress response phenotypes; and (c) screening of different genotypes such as accessions or segregating populations for their quantitative responses to abiotic stress parameters. More... »

PAGES

209-225

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-62703-194-3_15

DOI

http://dx.doi.org/10.1007/978-1-62703-194-3_15

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003559132

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23135854


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Plant Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adaptation, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Droughts", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Germination", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oryza", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phenotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Photosynthesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Salinity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Salt Tolerance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Soil", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stress, Physiological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Water", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, USA", 
          "id": "http://www.grid.ac/institutes/grid.438526.e", 
          "name": [
            "Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Batlang", 
        "givenName": "Utlwang", 
        "id": "sg:person.01162344161.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162344161.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, USA", 
          "id": "http://www.grid.ac/institutes/grid.250060.1", 
          "name": [
            "School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baisakh", 
        "givenName": "Niranjan", 
        "id": "sg:person.01025010271.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025010271.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, USA", 
          "id": "http://www.grid.ac/institutes/grid.438526.e", 
          "name": [
            "Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ambavaram", 
        "givenName": "Madana M. R.", 
        "id": "sg:person.01000002361.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000002361.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, USA", 
          "id": "http://www.grid.ac/institutes/grid.411017.2", 
          "name": [
            "Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, USA", 
            "Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pereira", 
        "givenName": "Andy", 
        "id": "sg:person.01344430566.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344430566.76"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2012-10-11", 
    "datePublishedReg": "2012-10-11", 
    "description": "Drought and salinity stresses seriously affect rice plant growth and yield. The growing need to improve rice cultivars for drought and salt tolerance requires the development of reproducible screening methods that simulate field conditions, and which provide quantitative data for statistical testing and selection of genotypes with differential responses. In addition, the study of molecular responses to drought and salt stress requires controlled conditions for growth and treatments that are reportable and comparable between different laboratories. Drought, also known as soil water deficit, can result from insufficient moisture for a plant to grow adequately and complete its life cycle. Salinity due to excess sodium chloride affects rice at seedling and flowering stages, reducing root and leaf growth. Both these abiotic stresses can lead to major physiological and biochemical changes such as reduced photosynthesis and reprogramming of gene expression. The methods presented in this chapter can be applied for (a) examination of stress responses in rice vegetative and reproductive tissues to identify and characterize molecular and physiological responses; (b) testing of candidate genes by overexpression or knockout studies evaluated for altered stress response phenotypes; and (c) screening of different genotypes such as accessions or segregating populations for their quantitative responses to abiotic stress parameters.", 
    "editor": [
      {
        "familyName": "Yang", 
        "givenName": "Yinong", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-62703-194-3_15", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-62703-193-6", 
        "978-1-62703-194-3"
      ], 
      "name": "Rice Protocols", 
      "type": "Book"
    }, 
    "keywords": [
      "stress response", 
      "soil water deficit", 
      "selection of genotypes", 
      "salinity stress response", 
      "rice plant growth", 
      "stress response phenotypes", 
      "reproducible screening method", 
      "salt tolerance", 
      "abiotic stresses", 
      "insufficient moisture", 
      "plant growth", 
      "water deficit", 
      "salt stress", 
      "salinity stress", 
      "leaf growth", 
      "field conditions", 
      "drought", 
      "knockout studies", 
      "gene expression", 
      "rice cultivars", 
      "candidate genes", 
      "reproductive tissues", 
      "rice", 
      "excess sodium chloride", 
      "different genotypes", 
      "molecular response", 
      "response phenotypes", 
      "differential response", 
      "physiological responses", 
      "life cycle", 
      "physiological evaluation", 
      "genotypes", 
      "growth", 
      "biochemical changes", 
      "quantitative response", 
      "reprogramming", 
      "cultivars", 
      "photosynthesis", 
      "yield", 
      "plants", 
      "genes", 
      "moisture", 
      "roots", 
      "accessions", 
      "stress", 
      "phenotypic", 
      "salinity", 
      "tolerance", 
      "overexpression", 
      "phenotype", 
      "screening method", 
      "expression", 
      "response", 
      "selection", 
      "population", 
      "quantitative data", 
      "tissue", 
      "conditions", 
      "sodium chloride", 
      "different laboratories", 
      "cycle", 
      "stage", 
      "deficits", 
      "screening", 
      "development", 
      "stress parameters", 
      "need", 
      "study", 
      "addition", 
      "changes", 
      "laboratory", 
      "treatment", 
      "chapter", 
      "data", 
      "statistical testing", 
      "evaluation", 
      "testing", 
      "method", 
      "chloride", 
      "parameters", 
      "examination", 
      "altered stress response phenotypes", 
      "abiotic stress parameters"
    ], 
    "name": "Phenotypic and Physiological Evaluation for Drought and Salinity Stress Responses in Rice", 
    "pagination": "209-225", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003559132"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-62703-194-3_15"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23135854"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-62703-194-3_15", 
      "https://app.dimensions.ai/details/publication/pub.1003559132"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_269.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-62703-194-3_15"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-62703-194-3_15'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-62703-194-3_15'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-62703-194-3_15'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-62703-194-3_15'


 

This table displays all metadata directly associated to this object as RDF triples.

223 TRIPLES      23 PREDICATES      120 URIs      112 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-62703-194-3_15 schema:about N078da80153674a43bd726d2949dba77a
2 N08acc480842d4b9a97a0367613744f6a
3 N2a0f63dac2964c9a9c8ed5f15b18c000
4 N5c4dcf04d5a447ebbd64d9e8a27af612
5 N5f14ae458e5c42a592e07bc97d8151f5
6 N7e232f594ca94d0db3fc18c70f5d5a6b
7 N8f2305935f554a07983d7cdd56cd3fae
8 Nb1c8481e70e34aa3b956d7c83bb4a2a4
9 Nc2c8b8bb8ced42cb99ccd6d09bc875af
10 Nea828a01f4064fbcb5ec747210e4e885
11 Nfaf91fb57f9c4e09be0c6418b441132e
12 anzsrc-for:06
13 anzsrc-for:0604
14 anzsrc-for:0607
15 schema:author N4343d7c867fd483ea50d88d590ff9f00
16 schema:datePublished 2012-10-11
17 schema:datePublishedReg 2012-10-11
18 schema:description Drought and salinity stresses seriously affect rice plant growth and yield. The growing need to improve rice cultivars for drought and salt tolerance requires the development of reproducible screening methods that simulate field conditions, and which provide quantitative data for statistical testing and selection of genotypes with differential responses. In addition, the study of molecular responses to drought and salt stress requires controlled conditions for growth and treatments that are reportable and comparable between different laboratories. Drought, also known as soil water deficit, can result from insufficient moisture for a plant to grow adequately and complete its life cycle. Salinity due to excess sodium chloride affects rice at seedling and flowering stages, reducing root and leaf growth. Both these abiotic stresses can lead to major physiological and biochemical changes such as reduced photosynthesis and reprogramming of gene expression. The methods presented in this chapter can be applied for (a) examination of stress responses in rice vegetative and reproductive tissues to identify and characterize molecular and physiological responses; (b) testing of candidate genes by overexpression or knockout studies evaluated for altered stress response phenotypes; and (c) screening of different genotypes such as accessions or segregating populations for their quantitative responses to abiotic stress parameters.
19 schema:editor N0f72ccd893c14630b302181afeddbf14
20 schema:genre chapter
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf Na875f2b093bc4c0297f3fa758a3581ba
24 schema:keywords abiotic stress parameters
25 abiotic stresses
26 accessions
27 addition
28 altered stress response phenotypes
29 biochemical changes
30 candidate genes
31 changes
32 chapter
33 chloride
34 conditions
35 cultivars
36 cycle
37 data
38 deficits
39 development
40 different genotypes
41 different laboratories
42 differential response
43 drought
44 evaluation
45 examination
46 excess sodium chloride
47 expression
48 field conditions
49 gene expression
50 genes
51 genotypes
52 growth
53 insufficient moisture
54 knockout studies
55 laboratory
56 leaf growth
57 life cycle
58 method
59 moisture
60 molecular response
61 need
62 overexpression
63 parameters
64 phenotype
65 phenotypic
66 photosynthesis
67 physiological evaluation
68 physiological responses
69 plant growth
70 plants
71 population
72 quantitative data
73 quantitative response
74 reproducible screening method
75 reproductive tissues
76 reprogramming
77 response
78 response phenotypes
79 rice
80 rice cultivars
81 rice plant growth
82 roots
83 salinity
84 salinity stress
85 salinity stress response
86 salt stress
87 salt tolerance
88 screening
89 screening method
90 selection
91 selection of genotypes
92 sodium chloride
93 soil water deficit
94 stage
95 statistical testing
96 stress
97 stress parameters
98 stress response
99 stress response phenotypes
100 study
101 testing
102 tissue
103 tolerance
104 treatment
105 water deficit
106 yield
107 schema:name Phenotypic and Physiological Evaluation for Drought and Salinity Stress Responses in Rice
108 schema:pagination 209-225
109 schema:productId N54199a49694342829cbe4388da700295
110 N60191bfa6db44aa7926f551925a0dddc
111 Nccef6157668a48598e47b5cd03b0e63c
112 schema:publisher N0708c2123af24e83a6c8771089c82be1
113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003559132
114 https://doi.org/10.1007/978-1-62703-194-3_15
115 schema:sdDatePublished 2021-12-01T20:02
116 schema:sdLicense https://scigraph.springernature.com/explorer/license/
117 schema:sdPublisher N675eb6c200754fc28fa1b1231a2aee8b
118 schema:url https://doi.org/10.1007/978-1-62703-194-3_15
119 sgo:license sg:explorer/license/
120 sgo:sdDataset chapters
121 rdf:type schema:Chapter
122 N0708c2123af24e83a6c8771089c82be1 schema:name Springer Nature
123 rdf:type schema:Organisation
124 N078da80153674a43bd726d2949dba77a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Germination
126 rdf:type schema:DefinedTerm
127 N08acc480842d4b9a97a0367613744f6a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Photosynthesis
129 rdf:type schema:DefinedTerm
130 N0f72ccd893c14630b302181afeddbf14 rdf:first N9080b45a2df04b21b49f0a3d78e2537e
131 rdf:rest rdf:nil
132 N2a0f63dac2964c9a9c8ed5f15b18c000 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Phenotype
134 rdf:type schema:DefinedTerm
135 N4343d7c867fd483ea50d88d590ff9f00 rdf:first sg:person.01162344161.04
136 rdf:rest Nc1ad3abb66aa4255bac201ffe4a4a963
137 N54199a49694342829cbe4388da700295 schema:name dimensions_id
138 schema:value pub.1003559132
139 rdf:type schema:PropertyValue
140 N54635fc68e7b414688f9bebcb63f0174 rdf:first sg:person.01344430566.76
141 rdf:rest rdf:nil
142 N5c4dcf04d5a447ebbd64d9e8a27af612 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Salt Tolerance
144 rdf:type schema:DefinedTerm
145 N5f14ae458e5c42a592e07bc97d8151f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Water
147 rdf:type schema:DefinedTerm
148 N60191bfa6db44aa7926f551925a0dddc schema:name pubmed_id
149 schema:value 23135854
150 rdf:type schema:PropertyValue
151 N675eb6c200754fc28fa1b1231a2aee8b schema:name Springer Nature - SN SciGraph project
152 rdf:type schema:Organization
153 N7e232f594ca94d0db3fc18c70f5d5a6b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Salinity
155 rdf:type schema:DefinedTerm
156 N8f2305935f554a07983d7cdd56cd3fae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Adaptation, Biological
158 rdf:type schema:DefinedTerm
159 N9080b45a2df04b21b49f0a3d78e2537e schema:familyName Yang
160 schema:givenName Yinong
161 rdf:type schema:Person
162 N9fd2585e27fc4d5392753f0d7943897a rdf:first sg:person.01000002361.29
163 rdf:rest N54635fc68e7b414688f9bebcb63f0174
164 Na875f2b093bc4c0297f3fa758a3581ba schema:isbn 978-1-62703-193-6
165 978-1-62703-194-3
166 schema:name Rice Protocols
167 rdf:type schema:Book
168 Nb1c8481e70e34aa3b956d7c83bb4a2a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Oryza
170 rdf:type schema:DefinedTerm
171 Nc1ad3abb66aa4255bac201ffe4a4a963 rdf:first sg:person.01025010271.93
172 rdf:rest N9fd2585e27fc4d5392753f0d7943897a
173 Nc2c8b8bb8ced42cb99ccd6d09bc875af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Stress, Physiological
175 rdf:type schema:DefinedTerm
176 Nccef6157668a48598e47b5cd03b0e63c schema:name doi
177 schema:value 10.1007/978-1-62703-194-3_15
178 rdf:type schema:PropertyValue
179 Nea828a01f4064fbcb5ec747210e4e885 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name Soil
181 rdf:type schema:DefinedTerm
182 Nfaf91fb57f9c4e09be0c6418b441132e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
183 schema:name Droughts
184 rdf:type schema:DefinedTerm
185 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
186 schema:name Biological Sciences
187 rdf:type schema:DefinedTerm
188 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
189 schema:name Genetics
190 rdf:type schema:DefinedTerm
191 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
192 schema:name Plant Biology
193 rdf:type schema:DefinedTerm
194 sg:person.01000002361.29 schema:affiliation grid-institutes:grid.438526.e
195 schema:familyName Ambavaram
196 schema:givenName Madana M. R.
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000002361.29
198 rdf:type schema:Person
199 sg:person.01025010271.93 schema:affiliation grid-institutes:grid.250060.1
200 schema:familyName Baisakh
201 schema:givenName Niranjan
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025010271.93
203 rdf:type schema:Person
204 sg:person.01162344161.04 schema:affiliation grid-institutes:grid.438526.e
205 schema:familyName Batlang
206 schema:givenName Utlwang
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162344161.04
208 rdf:type schema:Person
209 sg:person.01344430566.76 schema:affiliation grid-institutes:grid.411017.2
210 schema:familyName Pereira
211 schema:givenName Andy
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344430566.76
213 rdf:type schema:Person
214 grid-institutes:grid.250060.1 schema:alternateName School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
215 schema:name School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
216 rdf:type schema:Organization
217 grid-institutes:grid.411017.2 schema:alternateName Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, USA
218 schema:name Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, USA
219 Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, USA
220 rdf:type schema:Organization
221 grid-institutes:grid.438526.e schema:alternateName Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, USA
222 schema:name Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, USA
223 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...