Multiple Testing in Large-Scale Genetic Studies View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2012

AUTHORS

Matthieu Bouaziz , Marine Jeanmougin , Mickaël Guedj

ABSTRACT

Recent advances in Molecular Biology and improvements in microarray and sequencing technologies have led biologists toward high-throughput genomic studies. These studies aim at finding associations between genetic markers and a phenotype and involve conducting many statistical tests on these markers. Such Please confirm the changes in the sentence "Such a wide..." a wide investigation of the genome not only renders genomic studies quite attractive but also lead to a major shortcoming. That is, among the markers detected as associated with the phenotype, a nonnegligible proportion is not in reality (false-positives) and also true associations can be missed (false-negatives). A main cause of these spurious associations is due to the multiple-testing problem, inherent to conducting numerous statistical tests. Several approaches exist to work around this issue. These multiple-testing adjustments aim at defining new statistical confidence measures that are controlled to guarantee that the outcomes of the tests are pertinent.The most natural correction was introduced by Bonferroni and aims at controlling the family-wise error-rate (FWER) that is the probability of having at least one false-positive. Another approach is based on the false-discovery-rate (FDR) and considers the proportion of significant results that are expected to be false-positives. Finally, the local-FDR focuses on the actual probability for a marker of being associated or not with the phenotype. These strategies are widely used but one has to be careful about when and how to apply them. We propose in this chapter a discussion on the multiple-testing issue and on the main approaches to take it into account. We aim at providing a theoretical and intuitive definition of these concepts along with practical advises to guide researchers in choosing the more appropriate multiple-testing procedure corresponding to the purposes of their studies. More... »

PAGES

213-33

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-61779-870-2_13

DOI

http://dx.doi.org/10.1007/978-1-61779-870-2_13

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009759514

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22665284


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromosome Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "False Negative Reactions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "False Positive Reactions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Markers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phenotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Probability", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Biostatistics, Pharnext, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bouaziz", 
        "givenName": "Matthieu", 
        "id": "sg:person.01341524124.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341524124.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Biostatistics, Pharnext, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jeanmougin", 
        "givenName": "Marine", 
        "id": "sg:person.014247440241.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014247440241.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Biostatistics, Pharnext, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guedj", 
        "givenName": "Micka\u00ebl", 
        "id": "sg:person.0650603027.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650603027.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005461382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2007.02.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008655797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009500779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012687601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biostatistics/kxm002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016377781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0065-2660(07)00412-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016958092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biostatistics/5.2.155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018440158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.20331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022623449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1209-1135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023183755", 
          "https://doi.org/10.1038/nbt1209-1135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1209-1135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023183755", 
          "https://doi.org/10.1038/nbt1209-1135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btn379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023460902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024417264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029660577", 
          "https://doi.org/10.1038/nrg1916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029660577", 
          "https://doi.org/10.1038/nrg1916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029923104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031227738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajmg.b.30650", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031382283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.1124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032721028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1013699998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036427477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-10-84", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036519074", 
          "https://doi.org/10.1186/1471-2105-10-84"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041933952", 
          "https://doi.org/10.1186/1471-2105-9-303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041933952", 
          "https://doi.org/10.1186/1471-2105-9-303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-9473(01)00046-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043192579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1530509100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044620917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng749", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045063649", 
          "https://doi.org/10.1038/ng749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng749", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045063649", 
          "https://doi.org/10.1038/ng749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9868.2005.00515.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049370571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9868.2005.00515.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049370571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/378900", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058671919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/378900", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058671919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/cmb.2004.11.714", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059245288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcbb.2004.24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061540434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.273.5281.1516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062554106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074795569", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/107327481001700108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078024389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/107327481001700108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078024389"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012", 
    "datePublishedReg": "2012-01-01", 
    "description": "Recent advances in Molecular Biology and improvements in microarray and sequencing technologies have led biologists toward high-throughput genomic studies. These studies aim at finding associations between genetic markers and a phenotype and involve conducting many statistical tests on these markers. Such Please confirm the changes in the sentence \"Such a wide...\" a wide investigation of the genome not only renders genomic studies quite attractive but also lead to a major shortcoming. That is, among the markers detected as associated with the phenotype, a nonnegligible proportion is not in reality (false-positives) and also true associations can be missed (false-negatives). A main cause of these spurious associations is due to the multiple-testing problem, inherent to conducting numerous statistical tests. Several approaches exist to work around this issue. These multiple-testing adjustments aim at defining new statistical confidence measures that are controlled to guarantee that the outcomes of the tests are pertinent.The most natural correction was introduced by Bonferroni and aims at controlling the family-wise error-rate (FWER) that is the probability of having at least one false-positive. Another approach is based on the false-discovery-rate (FDR) and considers the proportion of significant results that are expected to be false-positives. Finally, the local-FDR focuses on the actual probability for a marker of being associated or not with the phenotype. These strategies are widely used but one has to be careful about when and how to apply them. We propose in this chapter a discussion on the multiple-testing issue and on the main approaches to take it into account. We aim at providing a theoretical and intuitive definition of these concepts along with practical advises to guide researchers in choosing the more appropriate multiple-testing procedure corresponding to the purposes of their studies.", 
    "editor": [
      {
        "familyName": "Pompanon", 
        "givenName": "Fran\u00e7ois", 
        "type": "Person"
      }, 
      {
        "familyName": "Bonin", 
        "givenName": "Aur\u00e9lie", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-61779-870-2_13", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-61779-869-6", 
        "978-1-61779-870-2"
      ], 
      "name": "Data Production and Analysis in Population Genomics", 
      "type": "Book"
    }, 
    "name": "Multiple Testing in Large-Scale Genetic Studies", 
    "pagination": "213-33", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-61779-870-2_13"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2e7e269b363088d8ad32e6260ce43c6068210028e1997a8cdb805dcf36742b61"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009759514"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22665284"
        ]
      }
    ], 
    "publisher": {
      "location": "Totowa, NJ", 
      "name": "Humana Press", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-61779-870-2_13", 
      "https://app.dimensions.ai/details/publication/pub.1009759514"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T14:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000249.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-1-61779-870-2_13"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-61779-870-2_13'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-61779-870-2_13'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-61779-870-2_13'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-61779-870-2_13'


 

This table displays all metadata directly associated to this object as RDF triples.

226 TRIPLES      23 PREDICATES      68 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-61779-870-2_13 schema:about N23c17cc167414cb58d06f602699af6e7
2 N44ba8ccb215e4088a4927783d83ac230
3 N52e1d2e46dfb476b9d3cec7d3405f3de
4 N70385a95da99495c9cf667fa06e96a93
5 N8094eb81533f4cdc8213be2cda7275be
6 N8b58481ec4aa49cdaf370a9a7b11a8da
7 N96272ed75a1c4aad8081c7759867abb6
8 Ncf7da74805e54fb0b93ef8231898465f
9 Nd1cc21ab6da54fd6bcc817aa049602eb
10 Nef0440cc2fb640cb9e5577fbe25f8f6b
11 Nf0df77f117264b388f18b73dcb5101e8
12 anzsrc-for:06
13 anzsrc-for:0604
14 schema:author N60ed13951a5a4d7893ce1381cf2f617b
15 schema:citation sg:pub.10.1038/nbt1209-1135
16 sg:pub.10.1038/ng749
17 sg:pub.10.1038/nrg1916
18 sg:pub.10.1186/1471-2105-10-84
19 sg:pub.10.1186/1471-2105-9-303
20 https://app.dimensions.ai/details/publication/pub.1074795569
21 https://doi.org/10.1002/ajmg.b.30650
22 https://doi.org/10.1002/gepi.1124
23 https://doi.org/10.1002/gepi.20331
24 https://doi.org/10.1016/j.csda.2007.02.028
25 https://doi.org/10.1016/s0065-2660(07)00412-9
26 https://doi.org/10.1016/s0167-9473(01)00046-9
27 https://doi.org/10.1073/pnas.1530509100
28 https://doi.org/10.1086/378900
29 https://doi.org/10.1089/cmb.2004.11.714
30 https://doi.org/10.1093/bioinformatics/btg148
31 https://doi.org/10.1093/bioinformatics/bth285
32 https://doi.org/10.1093/bioinformatics/bth310
33 https://doi.org/10.1093/bioinformatics/bti456
34 https://doi.org/10.1093/bioinformatics/btl148
35 https://doi.org/10.1093/bioinformatics/btn379
36 https://doi.org/10.1093/bioinformatics/btq001
37 https://doi.org/10.1093/biostatistics/5.2.155
38 https://doi.org/10.1093/biostatistics/kxm002
39 https://doi.org/10.1109/tcbb.2004.24
40 https://doi.org/10.1111/j.1467-9868.2005.00515.x
41 https://doi.org/10.1126/science.273.5281.1516
42 https://doi.org/10.1177/107327481001700108
43 https://doi.org/10.1214/aos/1013699998
44 schema:datePublished 2012
45 schema:datePublishedReg 2012-01-01
46 schema:description Recent advances in Molecular Biology and improvements in microarray and sequencing technologies have led biologists toward high-throughput genomic studies. These studies aim at finding associations between genetic markers and a phenotype and involve conducting many statistical tests on these markers. Such Please confirm the changes in the sentence "Such a wide..." a wide investigation of the genome not only renders genomic studies quite attractive but also lead to a major shortcoming. That is, among the markers detected as associated with the phenotype, a nonnegligible proportion is not in reality (false-positives) and also true associations can be missed (false-negatives). A main cause of these spurious associations is due to the multiple-testing problem, inherent to conducting numerous statistical tests. Several approaches exist to work around this issue. These multiple-testing adjustments aim at defining new statistical confidence measures that are controlled to guarantee that the outcomes of the tests are pertinent.The most natural correction was introduced by Bonferroni and aims at controlling the family-wise error-rate (FWER) that is the probability of having at least one false-positive. Another approach is based on the false-discovery-rate (FDR) and considers the proportion of significant results that are expected to be false-positives. Finally, the local-FDR focuses on the actual probability for a marker of being associated or not with the phenotype. These strategies are widely used but one has to be careful about when and how to apply them. We propose in this chapter a discussion on the multiple-testing issue and on the main approaches to take it into account. We aim at providing a theoretical and intuitive definition of these concepts along with practical advises to guide researchers in choosing the more appropriate multiple-testing procedure corresponding to the purposes of their studies.
47 schema:editor Nbe17f700964440519ee5f396aa7f7c62
48 schema:genre chapter
49 schema:inLanguage en
50 schema:isAccessibleForFree false
51 schema:isPartOf N3436745b93434bcc9e2f096a307da53a
52 schema:name Multiple Testing in Large-Scale Genetic Studies
53 schema:pagination 213-33
54 schema:productId N6bfaecbd51424907a39c9819d142404f
55 Nd31ac8f4d2e541cfbb018ae297c0831e
56 Nf5e2c92a3ed24879b69c29392220e21c
57 Nff1879e3dd5f46489084f083cc509c68
58 schema:publisher Nea870f915f6c4c2eb2e8eb22b871e322
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009759514
60 https://doi.org/10.1007/978-1-61779-870-2_13
61 schema:sdDatePublished 2019-04-15T14:23
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher Ne0d60c143cf64e49aa3e949be9407dd2
64 schema:url http://link.springer.com/10.1007/978-1-61779-870-2_13
65 sgo:license sg:explorer/license/
66 sgo:sdDataset chapters
67 rdf:type schema:Chapter
68 N22c2354c3ced41c49f6aae06fe571d75 schema:familyName Pompanon
69 schema:givenName François
70 rdf:type schema:Person
71 N23c17cc167414cb58d06f602699af6e7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name False Negative Reactions
73 rdf:type schema:DefinedTerm
74 N3436745b93434bcc9e2f096a307da53a schema:isbn 978-1-61779-869-6
75 978-1-61779-870-2
76 schema:name Data Production and Analysis in Population Genomics
77 rdf:type schema:Book
78 N44ba8ccb215e4088a4927783d83ac230 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name False Positive Reactions
80 rdf:type schema:DefinedTerm
81 N52e1d2e46dfb476b9d3cec7d3405f3de schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Gene Expression Profiling
83 rdf:type schema:DefinedTerm
84 N60ed13951a5a4d7893ce1381cf2f617b rdf:first sg:person.01341524124.23
85 rdf:rest Na176528c8e2f4e07910c4f5b12a2549a
86 N6bfaecbd51424907a39c9819d142404f schema:name dimensions_id
87 schema:value pub.1009759514
88 rdf:type schema:PropertyValue
89 N70385a95da99495c9cf667fa06e96a93 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Probability
91 rdf:type schema:DefinedTerm
92 N8094eb81533f4cdc8213be2cda7275be schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Predictive Value of Tests
94 rdf:type schema:DefinedTerm
95 N8b58481ec4aa49cdaf370a9a7b11a8da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Models, Statistical
97 rdf:type schema:DefinedTerm
98 N96272ed75a1c4aad8081c7759867abb6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Genetic Markers
100 rdf:type schema:DefinedTerm
101 Na176528c8e2f4e07910c4f5b12a2549a rdf:first sg:person.014247440241.18
102 rdf:rest Nf0a50e2f2de741788001ab2fa455268b
103 Nb1a92cc1804b4f16a9dff7844f60f46f rdf:first Nb65f6a0673a54d4db27a6a36d2ccb530
104 rdf:rest rdf:nil
105 Nb65f6a0673a54d4db27a6a36d2ccb530 schema:familyName Bonin
106 schema:givenName Aurélie
107 rdf:type schema:Person
108 Nbe17f700964440519ee5f396aa7f7c62 rdf:first N22c2354c3ced41c49f6aae06fe571d75
109 rdf:rest Nb1a92cc1804b4f16a9dff7844f60f46f
110 Nc2a53fc96a6044f19d071df1929f12b6 schema:name Department of Biostatistics, Pharnext, Paris, France
111 rdf:type schema:Organization
112 Ncf7da74805e54fb0b93ef8231898465f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Genomics
114 rdf:type schema:DefinedTerm
115 Nd1cc21ab6da54fd6bcc817aa049602eb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Humans
117 rdf:type schema:DefinedTerm
118 Nd31ac8f4d2e541cfbb018ae297c0831e schema:name doi
119 schema:value 10.1007/978-1-61779-870-2_13
120 rdf:type schema:PropertyValue
121 Ne0d60c143cf64e49aa3e949be9407dd2 schema:name Springer Nature - SN SciGraph project
122 rdf:type schema:Organization
123 Ne68425990e914d26b70df3c5ba12ba76 schema:name Department of Biostatistics, Pharnext, Paris, France
124 rdf:type schema:Organization
125 Nea870f915f6c4c2eb2e8eb22b871e322 schema:location Totowa, NJ
126 schema:name Humana Press
127 rdf:type schema:Organisation
128 Neeec4086420f465285e270c886f68b7d schema:name Department of Biostatistics, Pharnext, Paris, France
129 rdf:type schema:Organization
130 Nef0440cc2fb640cb9e5577fbe25f8f6b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Phenotype
132 rdf:type schema:DefinedTerm
133 Nf0a50e2f2de741788001ab2fa455268b rdf:first sg:person.0650603027.16
134 rdf:rest rdf:nil
135 Nf0df77f117264b388f18b73dcb5101e8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Chromosome Mapping
137 rdf:type schema:DefinedTerm
138 Nf5e2c92a3ed24879b69c29392220e21c schema:name pubmed_id
139 schema:value 22665284
140 rdf:type schema:PropertyValue
141 Nff1879e3dd5f46489084f083cc509c68 schema:name readcube_id
142 schema:value 2e7e269b363088d8ad32e6260ce43c6068210028e1997a8cdb805dcf36742b61
143 rdf:type schema:PropertyValue
144 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
145 schema:name Biological Sciences
146 rdf:type schema:DefinedTerm
147 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
148 schema:name Genetics
149 rdf:type schema:DefinedTerm
150 sg:person.01341524124.23 schema:affiliation Nc2a53fc96a6044f19d071df1929f12b6
151 schema:familyName Bouaziz
152 schema:givenName Matthieu
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341524124.23
154 rdf:type schema:Person
155 sg:person.014247440241.18 schema:affiliation Neeec4086420f465285e270c886f68b7d
156 schema:familyName Jeanmougin
157 schema:givenName Marine
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014247440241.18
159 rdf:type schema:Person
160 sg:person.0650603027.16 schema:affiliation Ne68425990e914d26b70df3c5ba12ba76
161 schema:familyName Guedj
162 schema:givenName Mickaël
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650603027.16
164 rdf:type schema:Person
165 sg:pub.10.1038/nbt1209-1135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023183755
166 https://doi.org/10.1038/nbt1209-1135
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/ng749 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045063649
169 https://doi.org/10.1038/ng749
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/nrg1916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029660577
172 https://doi.org/10.1038/nrg1916
173 rdf:type schema:CreativeWork
174 sg:pub.10.1186/1471-2105-10-84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036519074
175 https://doi.org/10.1186/1471-2105-10-84
176 rdf:type schema:CreativeWork
177 sg:pub.10.1186/1471-2105-9-303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041933952
178 https://doi.org/10.1186/1471-2105-9-303
179 rdf:type schema:CreativeWork
180 https://app.dimensions.ai/details/publication/pub.1074795569 schema:CreativeWork
181 https://doi.org/10.1002/ajmg.b.30650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031382283
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1002/gepi.1124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032721028
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1002/gepi.20331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022623449
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.csda.2007.02.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008655797
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/s0065-2660(07)00412-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016958092
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/s0167-9473(01)00046-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043192579
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1073/pnas.1530509100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044620917
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1086/378900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058671919
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1089/cmb.2004.11.714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059245288
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1093/bioinformatics/btg148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009500779
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1093/bioinformatics/bth285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031227738
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1093/bioinformatics/bth310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029923104
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1093/bioinformatics/bti456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005461382
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1093/bioinformatics/btl148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024417264
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1093/bioinformatics/btn379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023460902
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1093/bioinformatics/btq001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012687601
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1093/biostatistics/5.2.155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018440158
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1093/biostatistics/kxm002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016377781
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1109/tcbb.2004.24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061540434
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1111/j.1467-9868.2005.00515.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049370571
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1126/science.273.5281.1516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062554106
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1177/107327481001700108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078024389
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1214/aos/1013699998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036427477
226 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...