Engineering U7snRNA Gene to Reframe Transcripts View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2012

AUTHORS

Aurélie Goyenvalle

ABSTRACT

Antisense-mediated splicing modulation of premessenger RNA represents a novel therapeutic strategy for several types of pathologies such as genetic disorders, cancers, and infectious diseases. Antisense oligonucleotides designed to bind to specific mRNA molecules have been actively developed for more than 20 years as a form of molecular medicine to modulate splicing patterns or inhibit protein translation. More recently, small nuclear RNA such as U7 or U1 small nuclear RNA have been used to carry antisense sequences, offering the advantage of long-term effect when delivered to cells using viral vectors. We have previously demonstrated the therapeutic potential of U7snRNA targeting dystrophin mRNA as a treatment for Duchenne muscular dystrophy. In particular, we showed that bifunctional U7 snRNAs harboring silencer motifs induce complete skipping of exon 51, and thus restore dystrophin expression in DMD patients cells to near wild-type levels. These new constructs are very promising for the optimization of therapeutic exon skipping for DMD, but also offer powerful and versatile tools to modulate pre-mRNA splicing in a wide range of applications. Here, we outline the design of these U7snRNA constructs to achieve efficient exon-skipping and describe methods to evaluate the efficacy of such U7snRNA constructs in vitro using the dystrophin gene as an example. More... »

PAGES

259-71

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-61779-767-5_17

DOI

http://dx.doi.org/10.1007/978-1-61779-767-5_17

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047200321

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22454067


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1004", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical Biotechnology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Line", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dystrophin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Exons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Therapy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Vectors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lentivirus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Muscular Dystrophy, Duchenne", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myoblasts", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Small Nuclear", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transduction, Genetic", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Oxford", 
          "id": "https://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "MRC Functional Genomics Unit, Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goyenvalle", 
        "givenName": "Aur\u00e9lie", 
        "id": "sg:person.01200571036.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200571036.55"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/hmg/8.13.2415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004341920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/mt.2009.113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004419215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/7.7.1083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004919532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jgm.295", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004977651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1196/annals.1348.058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021776621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.98.1.42", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022610150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gad.1195304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024831634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nsb887", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026008206", 
          "https://doi.org/10.1038/nsb887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1474-4422(09)70211-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028331148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0960-8966(02)00086-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034308763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0960-8966(02)00086-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034308763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00018-004-4190-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035918405", 
          "https://doi.org/10.1007/s00018-004-4190-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/ddg100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036654385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0888-7543(88)90113-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040394007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s000180300047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041592384", 
          "https://doi.org/10.1007/s000180300047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.142302299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043893238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa073108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045669944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1073774", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049709064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/10.15.1547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053317642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/oli.2005.15.284", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059303275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1104297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062451121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078924717", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082383114", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/j.1460-2075.1994.tb06369.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082392304"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012", 
    "datePublishedReg": "2012-01-01", 
    "description": "Antisense-mediated splicing modulation of premessenger RNA represents a novel therapeutic strategy for several types of pathologies such as genetic disorders, cancers, and infectious diseases. Antisense oligonucleotides designed to bind to specific mRNA molecules have been actively developed for more than 20 years as a form of molecular medicine to modulate splicing patterns or inhibit protein translation. More recently, small nuclear RNA such as U7 or U1 small nuclear RNA have been used to carry antisense sequences, offering the advantage of long-term effect when delivered to cells using viral vectors. We have previously demonstrated the therapeutic potential of U7snRNA targeting dystrophin mRNA as a treatment for Duchenne muscular dystrophy. In particular, we showed that bifunctional U7 snRNAs harboring silencer motifs induce complete skipping of exon 51, and thus restore dystrophin expression in DMD patients cells to near wild-type levels. These new constructs are very promising for the optimization of therapeutic exon skipping for DMD, but also offer powerful and versatile tools to modulate pre-mRNA splicing in a wide range of applications. Here, we outline the design of these U7snRNA constructs to achieve efficient exon-skipping and describe methods to evaluate the efficacy of such U7snRNA constructs in vitro using the dystrophin gene as an example.", 
    "editor": [
      {
        "familyName": "Aartsma-Rus", 
        "givenName": "Annemieke", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-61779-767-5_17", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-61779-766-8", 
        "978-1-61779-767-5"
      ], 
      "name": "Exon Skipping", 
      "type": "Book"
    }, 
    "name": "Engineering U7snRNA Gene to Reframe Transcripts", 
    "pagination": "259-71", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-61779-767-5_17"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e0d8db0a23f59d609441e60d9d63e0b15ddaafbb488883f011711c006c30f6f3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047200321"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22454067"
        ]
      }
    ], 
    "publisher": {
      "location": "Totowa, NJ", 
      "name": "Humana Press", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-61779-767-5_17", 
      "https://app.dimensions.ai/details/publication/pub.1047200321"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T11:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000272.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-1-61779-767-5_17"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-61779-767-5_17'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-61779-767-5_17'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-61779-767-5_17'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-61779-767-5_17'


 

This table displays all metadata directly associated to this object as RDF triples.

195 TRIPLES      23 PREDICATES      65 URIs      35 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-61779-767-5_17 schema:about N27750fa72ef343c489112b231622d400
2 N27f37a6317cf48969c686a501246d3c1
3 N309ca11a294446bfacbd10e9be2bf7a6
4 N58b6e202c04f43ed95da037a2ae8c20c
5 N624c60d8168d492a95b9aea36a2feed5
6 N73cec64d60c44381b9c85de0db110f1b
7 N7defb523cff84b7b9811d1f521bed669
8 N7ff2ad2328b943a1b76bf54d6b2b879a
9 N9464fdcb42264448aec038978008db20
10 N9716e7ef00d94430be943a96b8c624fc
11 Nb7a41ebcea7d4212a07defaccd834c47
12 Nc18f7182666c427e84949eebfe1c0304
13 Nc8cfa9ac8ce2458fb13b4879ce1722af
14 Nd1ebebf35f864bbdbce3da4c2025e6fa
15 anzsrc-for:10
16 anzsrc-for:1004
17 schema:author Nfca06753505a4c72aedf29f9a5f50a23
18 schema:citation sg:pub.10.1007/s00018-004-4190-0
19 sg:pub.10.1007/s000180300047
20 sg:pub.10.1038/nsb887
21 https://app.dimensions.ai/details/publication/pub.1078924717
22 https://app.dimensions.ai/details/publication/pub.1082383114
23 https://doi.org/10.1002/j.1460-2075.1994.tb06369.x
24 https://doi.org/10.1002/jgm.295
25 https://doi.org/10.1016/0888-7543(88)90113-9
26 https://doi.org/10.1016/s0960-8966(02)00086-x
27 https://doi.org/10.1016/s1474-4422(09)70211-x
28 https://doi.org/10.1038/mt.2009.113
29 https://doi.org/10.1056/nejmoa073108
30 https://doi.org/10.1073/pnas.142302299
31 https://doi.org/10.1073/pnas.98.1.42
32 https://doi.org/10.1089/oli.2005.15.284
33 https://doi.org/10.1093/hmg/10.15.1547
34 https://doi.org/10.1093/hmg/7.7.1083
35 https://doi.org/10.1093/hmg/8.13.2415
36 https://doi.org/10.1093/hmg/ddg100
37 https://doi.org/10.1101/gad.1195304
38 https://doi.org/10.1126/science.1073774
39 https://doi.org/10.1126/science.1104297
40 https://doi.org/10.1196/annals.1348.058
41 schema:datePublished 2012
42 schema:datePublishedReg 2012-01-01
43 schema:description Antisense-mediated splicing modulation of premessenger RNA represents a novel therapeutic strategy for several types of pathologies such as genetic disorders, cancers, and infectious diseases. Antisense oligonucleotides designed to bind to specific mRNA molecules have been actively developed for more than 20 years as a form of molecular medicine to modulate splicing patterns or inhibit protein translation. More recently, small nuclear RNA such as U7 or U1 small nuclear RNA have been used to carry antisense sequences, offering the advantage of long-term effect when delivered to cells using viral vectors. We have previously demonstrated the therapeutic potential of U7snRNA targeting dystrophin mRNA as a treatment for Duchenne muscular dystrophy. In particular, we showed that bifunctional U7 snRNAs harboring silencer motifs induce complete skipping of exon 51, and thus restore dystrophin expression in DMD patients cells to near wild-type levels. These new constructs are very promising for the optimization of therapeutic exon skipping for DMD, but also offer powerful and versatile tools to modulate pre-mRNA splicing in a wide range of applications. Here, we outline the design of these U7snRNA constructs to achieve efficient exon-skipping and describe methods to evaluate the efficacy of such U7snRNA constructs in vitro using the dystrophin gene as an example.
44 schema:editor N0265b98eea3b4865a5cc7159cca94981
45 schema:genre chapter
46 schema:inLanguage en
47 schema:isAccessibleForFree false
48 schema:isPartOf N61d58b9760d647be9664c24a9ef1b78e
49 schema:name Engineering U7snRNA Gene to Reframe Transcripts
50 schema:pagination 259-71
51 schema:productId N47874a1607744a4c8f6b608f445ce504
52 N5f92bba9344949d38be40d6df81a2658
53 N8a0d793b57db4cb5879f242ae8c838e4
54 Nb842aa11e4154ee29b0c9f2d31654e16
55 schema:publisher N7bd7b182795c450e9f3beeb39cf6cc6c
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047200321
57 https://doi.org/10.1007/978-1-61779-767-5_17
58 schema:sdDatePublished 2019-04-15T11:37
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N28b66303bf384c58938e19b42fcb2c14
61 schema:url http://link.springer.com/10.1007/978-1-61779-767-5_17
62 sgo:license sg:explorer/license/
63 sgo:sdDataset chapters
64 rdf:type schema:Chapter
65 N0265b98eea3b4865a5cc7159cca94981 rdf:first Na91dc78009df48428223044df6ad1c82
66 rdf:rest rdf:nil
67 N27750fa72ef343c489112b231622d400 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Animals
69 rdf:type schema:DefinedTerm
70 N27f37a6317cf48969c686a501246d3c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Mice
72 rdf:type schema:DefinedTerm
73 N28b66303bf384c58938e19b42fcb2c14 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 N309ca11a294446bfacbd10e9be2bf7a6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Genetic Vectors
77 rdf:type schema:DefinedTerm
78 N47874a1607744a4c8f6b608f445ce504 schema:name readcube_id
79 schema:value e0d8db0a23f59d609441e60d9d63e0b15ddaafbb488883f011711c006c30f6f3
80 rdf:type schema:PropertyValue
81 N58b6e202c04f43ed95da037a2ae8c20c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Muscular Dystrophy, Duchenne
83 rdf:type schema:DefinedTerm
84 N5f92bba9344949d38be40d6df81a2658 schema:name pubmed_id
85 schema:value 22454067
86 rdf:type schema:PropertyValue
87 N61d58b9760d647be9664c24a9ef1b78e schema:isbn 978-1-61779-766-8
88 978-1-61779-767-5
89 schema:name Exon Skipping
90 rdf:type schema:Book
91 N624c60d8168d492a95b9aea36a2feed5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Gene Expression
93 rdf:type schema:DefinedTerm
94 N73cec64d60c44381b9c85de0db110f1b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Transduction, Genetic
96 rdf:type schema:DefinedTerm
97 N7bd7b182795c450e9f3beeb39cf6cc6c schema:location Totowa, NJ
98 schema:name Humana Press
99 rdf:type schema:Organisation
100 N7defb523cff84b7b9811d1f521bed669 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Exons
102 rdf:type schema:DefinedTerm
103 N7ff2ad2328b943a1b76bf54d6b2b879a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Lentivirus
105 rdf:type schema:DefinedTerm
106 N8a0d793b57db4cb5879f242ae8c838e4 schema:name dimensions_id
107 schema:value pub.1047200321
108 rdf:type schema:PropertyValue
109 N9464fdcb42264448aec038978008db20 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name RNA, Small Nuclear
111 rdf:type schema:DefinedTerm
112 N9716e7ef00d94430be943a96b8c624fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Cell Line
114 rdf:type schema:DefinedTerm
115 Na91dc78009df48428223044df6ad1c82 schema:familyName Aartsma-Rus
116 schema:givenName Annemieke
117 rdf:type schema:Person
118 Nb7a41ebcea7d4212a07defaccd834c47 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Genetic Therapy
120 rdf:type schema:DefinedTerm
121 Nb842aa11e4154ee29b0c9f2d31654e16 schema:name doi
122 schema:value 10.1007/978-1-61779-767-5_17
123 rdf:type schema:PropertyValue
124 Nc18f7182666c427e84949eebfe1c0304 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Myoblasts
126 rdf:type schema:DefinedTerm
127 Nc8cfa9ac8ce2458fb13b4879ce1722af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Humans
129 rdf:type schema:DefinedTerm
130 Nd1ebebf35f864bbdbce3da4c2025e6fa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Dystrophin
132 rdf:type schema:DefinedTerm
133 Nfca06753505a4c72aedf29f9a5f50a23 rdf:first sg:person.01200571036.55
134 rdf:rest rdf:nil
135 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
136 schema:name Technology
137 rdf:type schema:DefinedTerm
138 anzsrc-for:1004 schema:inDefinedTermSet anzsrc-for:
139 schema:name Medical Biotechnology
140 rdf:type schema:DefinedTerm
141 sg:person.01200571036.55 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
142 schema:familyName Goyenvalle
143 schema:givenName Aurélie
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200571036.55
145 rdf:type schema:Person
146 sg:pub.10.1007/s00018-004-4190-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035918405
147 https://doi.org/10.1007/s00018-004-4190-0
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/s000180300047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041592384
150 https://doi.org/10.1007/s000180300047
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/nsb887 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026008206
153 https://doi.org/10.1038/nsb887
154 rdf:type schema:CreativeWork
155 https://app.dimensions.ai/details/publication/pub.1078924717 schema:CreativeWork
156 https://app.dimensions.ai/details/publication/pub.1082383114 schema:CreativeWork
157 https://doi.org/10.1002/j.1460-2075.1994.tb06369.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1082392304
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1002/jgm.295 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004977651
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/0888-7543(88)90113-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040394007
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/s0960-8966(02)00086-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034308763
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/s1474-4422(09)70211-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028331148
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1038/mt.2009.113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004419215
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1056/nejmoa073108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045669944
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1073/pnas.142302299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043893238
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1073/pnas.98.1.42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022610150
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1089/oli.2005.15.284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059303275
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1093/hmg/10.15.1547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053317642
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1093/hmg/7.7.1083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004919532
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1093/hmg/8.13.2415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004341920
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1093/hmg/ddg100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036654385
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1101/gad.1195304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024831634
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1126/science.1073774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049709064
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1126/science.1104297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062451121
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1196/annals.1348.058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021776621
192 rdf:type schema:CreativeWork
193 https://www.grid.ac/institutes/grid.4991.5 schema:alternateName University of Oxford
194 schema:name MRC Functional Genomics Unit, Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
195 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...