TagFinder: Preprocessing Software for the Fingerprinting and the Profiling of Gas Chromatography–Mass Spectrometry Based Metabolome Analyses View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011

AUTHORS

Alexander Luedemann , Luise von Malotky , Alexander Erban , Joachim Kopka

ABSTRACT

GC-MS based metabolome studies aim for the complete identification and relative or absolute quantification of metabolites in complex extracts from a large diversity of biological materials. The resulting high-throughput chromatography data files are typically processed following two complementary workflows, namely, fingerprinting and profiling. For fingerprinting studies all observed mass features, here called mass spectral tags (MSTs), are quantified in a nontargeted and (within the limits of the GC-MS technology) comprehensive approach. Fingerprinting allows for the discovery of MSTs, which, in the sense of a biomarker, indicate significant changes of metabolite pool sizes. The significance and relevance of such MSTs are typically tested in comparison to standardized reference samples. Only after this confirmation step are the relevant MSTs identified and the underlying metabolic biomarkers elucidated. Both the metabolite fingerprinting and profiling approaches are essential to modern biotechnological investigations. Studies which are aimed at establishing the substantial equivalence at metabolic level or aim to breed for optimum quality of human food or animal feed especially benefit from the potential to discover novel unforeseen metabolic factors in fingerprinting approaches and from the option to demonstrate unchanged pool sizes of known metabolites in the metabolic profiling mode. As GC-MS technology represents one essential element which contributes to investigations of substantial equivalence, we have developed a dedicated software tool, the TagFinder chromatography data preprocessing suite, which has all essential functions to support both fundamental workflows of modern metabolomic studies. In this chapter, we describe the TagFinder software and its application to the assessment of metabolic phenotypes in fingerprinting and profiling analyses. More... »

PAGES

255-286

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-61779-594-7_16

DOI

http://dx.doi.org/10.1007/978-1-61779-594-7_16

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022086349

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22351182


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Analytical Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gas Chromatography-Mass Spectrometry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metabolome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metabolomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany", 
          "id": "http://www.grid.ac/institutes/grid.418390.7", 
          "name": [
            "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luedemann", 
        "givenName": "Alexander", 
        "id": "sg:person.0577356370.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577356370.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany", 
          "id": "http://www.grid.ac/institutes/grid.418390.7", 
          "name": [
            "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "von Malotky", 
        "givenName": "Luise", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany", 
          "id": "http://www.grid.ac/institutes/grid.418390.7", 
          "name": [
            "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Erban", 
        "givenName": "Alexander", 
        "id": "sg:person.01353252733.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353252733.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany", 
          "id": "http://www.grid.ac/institutes/grid.418390.7", 
          "name": [
            "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kopka", 
        "givenName": "Joachim", 
        "id": "sg:person.0633132075.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633132075.84"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2011", 
    "datePublishedReg": "2011-01-01", 
    "description": "GC-MS based metabolome studies aim for the complete identification and relative or absolute quantification of metabolites in complex extracts from a large diversity of biological materials. The resulting high-throughput chromatography data files are typically processed following two complementary workflows, namely, fingerprinting and profiling. For fingerprinting studies all observed mass features, here called mass spectral tags (MSTs), are quantified in a nontargeted and (within the limits of the GC-MS technology) comprehensive approach. Fingerprinting allows for the discovery of MSTs, which, in the sense of a biomarker, indicate significant changes of metabolite pool sizes. The significance and relevance of such MSTs are typically tested in comparison to standardized reference samples. Only after this confirmation step are the relevant MSTs identified and the underlying metabolic biomarkers elucidated. Both the metabolite fingerprinting and profiling approaches are essential to modern biotechnological investigations. Studies which are aimed at establishing the substantial equivalence at metabolic level or aim to breed for optimum quality of human food or animal feed especially benefit from the potential to discover novel unforeseen metabolic factors in fingerprinting approaches and from the option to demonstrate unchanged pool sizes of known metabolites in the metabolic profiling mode. As GC-MS technology represents one essential element which contributes to investigations of substantial equivalence, we have developed a dedicated software tool, the TagFinder chromatography data preprocessing suite, which has all essential functions to support both fundamental workflows of modern metabolomic studies. In this chapter, we describe the TagFinder software and its application to the assessment of metabolic phenotypes in fingerprinting and profiling analyses.", 
    "editor": [
      {
        "familyName": "Hardy", 
        "givenName": "Nigel W.", 
        "type": "Person"
      }, 
      {
        "familyName": "Hall", 
        "givenName": "Robert D.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-61779-594-7_16", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-61779-593-0", 
        "978-1-61779-594-7"
      ], 
      "name": "Plant Metabolomics", 
      "type": "Book"
    }, 
    "keywords": [
      "mass spectral tags", 
      "metabolite pool sizes", 
      "pool size", 
      "essential functions", 
      "biotechnological investigations", 
      "substantial equivalence", 
      "metabolome studies", 
      "metabolome analysis", 
      "profiling approach", 
      "metabolic level", 
      "large diversity", 
      "metabolic phenotype", 
      "human food", 
      "absolute quantification", 
      "animal feed", 
      "complementary workflows", 
      "fingerprinting", 
      "profiling", 
      "fundamental workflow", 
      "metabolomics studies", 
      "mass features", 
      "metabolites", 
      "diversity", 
      "phenotype", 
      "complex extracts", 
      "biological materials", 
      "complete identification", 
      "tags", 
      "essential elements", 
      "discovery", 
      "confirmation step", 
      "chromatography data", 
      "biomarkers", 
      "identification", 
      "GC-MS technology", 
      "metabolic biomarkers", 
      "extract", 
      "function", 
      "analysis", 
      "GC-MS", 
      "study", 
      "size", 
      "metabolic factors", 
      "suite", 
      "workflow", 
      "food", 
      "significant changes", 
      "feed", 
      "levels", 
      "changes", 
      "potential", 
      "factors", 
      "quantification", 
      "significance", 
      "step", 
      "elements", 
      "relevance", 
      "software tools", 
      "investigation", 
      "approach", 
      "tool", 
      "chapter", 
      "reference samples", 
      "comprehensive approach", 
      "data files", 
      "data", 
      "features", 
      "comparison", 
      "dedicated software tool", 
      "samples", 
      "mode", 
      "technology", 
      "aim", 
      "applications", 
      "quality", 
      "assessment", 
      "software", 
      "optimum quality", 
      "options", 
      "materials", 
      "sense", 
      "files", 
      "equivalence"
    ], 
    "name": "TagFinder: Preprocessing Software for the Fingerprinting and the Profiling of Gas Chromatography\u2013Mass Spectrometry Based Metabolome Analyses", 
    "pagination": "255-286", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022086349"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-61779-594-7_16"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22351182"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-61779-594-7_16", 
      "https://app.dimensions.ai/details/publication/pub.1022086349"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-10T10:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_362.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-61779-594-7_16"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-61779-594-7_16'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-61779-594-7_16'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-61779-594-7_16'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-61779-594-7_16'


 

This table displays all metadata directly associated to this object as RDF triples.

192 TRIPLES      23 PREDICATES      114 URIs      107 LITERALS      13 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-61779-594-7_16 schema:about N20edb00070514040844d450419ae5f3c
2 N230b7ea12c014a8090504c6a1e753d9f
3 N2e16966431dd4fcb9d00110b0bc75785
4 Ne70f592fda6e4a9da56a8607aa3d48f1
5 Nfcdc8571a4ce401eb4f19b28e4888ffd
6 anzsrc-for:03
7 anzsrc-for:0301
8 schema:author N9d333486c0584bdf87eb2f4cd1b5b799
9 schema:datePublished 2011
10 schema:datePublishedReg 2011-01-01
11 schema:description GC-MS based metabolome studies aim for the complete identification and relative or absolute quantification of metabolites in complex extracts from a large diversity of biological materials. The resulting high-throughput chromatography data files are typically processed following two complementary workflows, namely, fingerprinting and profiling. For fingerprinting studies all observed mass features, here called mass spectral tags (MSTs), are quantified in a nontargeted and (within the limits of the GC-MS technology) comprehensive approach. Fingerprinting allows for the discovery of MSTs, which, in the sense of a biomarker, indicate significant changes of metabolite pool sizes. The significance and relevance of such MSTs are typically tested in comparison to standardized reference samples. Only after this confirmation step are the relevant MSTs identified and the underlying metabolic biomarkers elucidated. Both the metabolite fingerprinting and profiling approaches are essential to modern biotechnological investigations. Studies which are aimed at establishing the substantial equivalence at metabolic level or aim to breed for optimum quality of human food or animal feed especially benefit from the potential to discover novel unforeseen metabolic factors in fingerprinting approaches and from the option to demonstrate unchanged pool sizes of known metabolites in the metabolic profiling mode. As GC-MS technology represents one essential element which contributes to investigations of substantial equivalence, we have developed a dedicated software tool, the TagFinder chromatography data preprocessing suite, which has all essential functions to support both fundamental workflows of modern metabolomic studies. In this chapter, we describe the TagFinder software and its application to the assessment of metabolic phenotypes in fingerprinting and profiling analyses.
12 schema:editor N177c22892ca74e55a0cde8e6b12c488e
13 schema:genre chapter
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N57cfb7a1f458435789ec33e482b5876d
17 schema:keywords GC-MS
18 GC-MS technology
19 absolute quantification
20 aim
21 analysis
22 animal feed
23 applications
24 approach
25 assessment
26 biological materials
27 biomarkers
28 biotechnological investigations
29 changes
30 chapter
31 chromatography data
32 comparison
33 complementary workflows
34 complete identification
35 complex extracts
36 comprehensive approach
37 confirmation step
38 data
39 data files
40 dedicated software tool
41 discovery
42 diversity
43 elements
44 equivalence
45 essential elements
46 essential functions
47 extract
48 factors
49 features
50 feed
51 files
52 fingerprinting
53 food
54 function
55 fundamental workflow
56 human food
57 identification
58 investigation
59 large diversity
60 levels
61 mass features
62 mass spectral tags
63 materials
64 metabolic biomarkers
65 metabolic factors
66 metabolic level
67 metabolic phenotype
68 metabolite pool sizes
69 metabolites
70 metabolome analysis
71 metabolome studies
72 metabolomics studies
73 mode
74 optimum quality
75 options
76 phenotype
77 pool size
78 potential
79 profiling
80 profiling approach
81 quality
82 quantification
83 reference samples
84 relevance
85 samples
86 sense
87 significance
88 significant changes
89 size
90 software
91 software tools
92 step
93 study
94 substantial equivalence
95 suite
96 tags
97 technology
98 tool
99 workflow
100 schema:name TagFinder: Preprocessing Software for the Fingerprinting and the Profiling of Gas Chromatography–Mass Spectrometry Based Metabolome Analyses
101 schema:pagination 255-286
102 schema:productId Nb0ee980d3d564044bd003dc70a8097f7
103 Nc2c893a01d664830a55b0c905c96d695
104 Ncecbccb30f25425a8181fbd075dda2fd
105 schema:publisher N3d97c0939ae0474e9ac961e083078292
106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022086349
107 https://doi.org/10.1007/978-1-61779-594-7_16
108 schema:sdDatePublished 2022-05-10T10:48
109 schema:sdLicense https://scigraph.springernature.com/explorer/license/
110 schema:sdPublisher N40518c367de9424cb54473ee4d2dde67
111 schema:url https://doi.org/10.1007/978-1-61779-594-7_16
112 sgo:license sg:explorer/license/
113 sgo:sdDataset chapters
114 rdf:type schema:Chapter
115 N177c22892ca74e55a0cde8e6b12c488e rdf:first N6d134294da994c6fae13c56395e29306
116 rdf:rest Nea4b3c99f6db4135ae52447474f55443
117 N20edb00070514040844d450419ae5f3c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Biomarkers
119 rdf:type schema:DefinedTerm
120 N230b7ea12c014a8090504c6a1e753d9f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Software
122 rdf:type schema:DefinedTerm
123 N2e16966431dd4fcb9d00110b0bc75785 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Metabolomics
125 rdf:type schema:DefinedTerm
126 N317f988b70f748dfb8850fbe9efbb42b rdf:first Nf1826b559e044b1cbc5f1d5570fce1e8
127 rdf:rest Nd07fbeb4d4204e7f9bbb42e56335b6b9
128 N3d97c0939ae0474e9ac961e083078292 schema:name Springer Nature
129 rdf:type schema:Organisation
130 N40518c367de9424cb54473ee4d2dde67 schema:name Springer Nature - SN SciGraph project
131 rdf:type schema:Organization
132 N41181ecd782b45fc81ec83d9d5529013 schema:familyName Hall
133 schema:givenName Robert D.
134 rdf:type schema:Person
135 N57cfb7a1f458435789ec33e482b5876d schema:isbn 978-1-61779-593-0
136 978-1-61779-594-7
137 schema:name Plant Metabolomics
138 rdf:type schema:Book
139 N6d134294da994c6fae13c56395e29306 schema:familyName Hardy
140 schema:givenName Nigel W.
141 rdf:type schema:Person
142 N9d333486c0584bdf87eb2f4cd1b5b799 rdf:first sg:person.0577356370.34
143 rdf:rest N317f988b70f748dfb8850fbe9efbb42b
144 Nb0ee980d3d564044bd003dc70a8097f7 schema:name dimensions_id
145 schema:value pub.1022086349
146 rdf:type schema:PropertyValue
147 Nc2c893a01d664830a55b0c905c96d695 schema:name doi
148 schema:value 10.1007/978-1-61779-594-7_16
149 rdf:type schema:PropertyValue
150 Ncecbccb30f25425a8181fbd075dda2fd schema:name pubmed_id
151 schema:value 22351182
152 rdf:type schema:PropertyValue
153 Nd07fbeb4d4204e7f9bbb42e56335b6b9 rdf:first sg:person.01353252733.38
154 rdf:rest Nf2a95e820681462a88cb965cb4f5a8ab
155 Ne70f592fda6e4a9da56a8607aa3d48f1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Gas Chromatography-Mass Spectrometry
157 rdf:type schema:DefinedTerm
158 Nea4b3c99f6db4135ae52447474f55443 rdf:first N41181ecd782b45fc81ec83d9d5529013
159 rdf:rest rdf:nil
160 Nf1826b559e044b1cbc5f1d5570fce1e8 schema:affiliation grid-institutes:grid.418390.7
161 schema:familyName von Malotky
162 schema:givenName Luise
163 rdf:type schema:Person
164 Nf2a95e820681462a88cb965cb4f5a8ab rdf:first sg:person.0633132075.84
165 rdf:rest rdf:nil
166 Nfcdc8571a4ce401eb4f19b28e4888ffd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Metabolome
168 rdf:type schema:DefinedTerm
169 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
170 schema:name Chemical Sciences
171 rdf:type schema:DefinedTerm
172 anzsrc-for:0301 schema:inDefinedTermSet anzsrc-for:
173 schema:name Analytical Chemistry
174 rdf:type schema:DefinedTerm
175 sg:person.01353252733.38 schema:affiliation grid-institutes:grid.418390.7
176 schema:familyName Erban
177 schema:givenName Alexander
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353252733.38
179 rdf:type schema:Person
180 sg:person.0577356370.34 schema:affiliation grid-institutes:grid.418390.7
181 schema:familyName Luedemann
182 schema:givenName Alexander
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577356370.34
184 rdf:type schema:Person
185 sg:person.0633132075.84 schema:affiliation grid-institutes:grid.418390.7
186 schema:familyName Kopka
187 schema:givenName Joachim
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633132075.84
189 rdf:type schema:Person
190 grid-institutes:grid.418390.7 schema:alternateName Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
191 schema:name Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
192 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...