miRNA Expression Profiling: From Reference Genes to Global Mean Normalization View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2012

AUTHORS

Barbara D’haene , Pieter Mestdagh , Jan Hellemans , Jo Vandesompele

ABSTRACT

MicroRNAs (miRNAs) are an important class of gene regulators, acting on several aspects of cellular function such as differentiation, cell cycle control, and stemness. These master regulators constitute an invaluable source of biomarkers, and several miRNA signatures correlating with patient diagnosis, prognosis, and response to treatment have been identified. Within this exciting field of research, whole-genome RT-qPCR-based miRNA profiling in combination with a global mean normalization strategy has proven to be the most sensitive and accurate approach for high-throughput miRNA profiling (Mestdagh et al., Genome Biol 10:R64, 2009). In this chapter, we summarize the power of the previously described global mean normalization method in comparison to the multiple reference gene normalization method using the most stably expressed small RNA controls. In addition, we compare the original global mean method to a modified global mean normalization strategy based on the attribution of equal weight to each individual miRNA during normalization. This modified algorithm is implemented in Biogazelle's qbasePLUS software and is presented here for the first time. More... »

PAGES

261-272

References to SciGraph publications

Book

TITLE

Next-Generation MicroRNA Expression Profiling Technology

ISBN

978-1-61779-426-1
978-1-61779-427-8

Author Affiliations

From Grant

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-61779-427-8_18

DOI

http://dx.doi.org/10.1007/978-1-61779-427-8_18

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034502204

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22144205


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "MicroRNAs", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quality Control", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Small Untranslated", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reference Standards", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Biogazelle, Zwijnaarde, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "D\u2019haene", 
        "givenName": "Barbara", 
        "id": "sg:person.0740673320.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740673320.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ghent University", 
          "id": "https://www.grid.ac/institutes/grid.5342.0", 
          "name": [
            "Center for Medical Genetics, Ghent University, Ghent, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mestdagh", 
        "givenName": "Pieter", 
        "id": "sg:person.01174241331.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174241331.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Biogazelle, Zwijnaarde, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hellemans", 
        "givenName": "Jan", 
        "id": "sg:person.01337400337.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337400337.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ghent University", 
          "id": "https://www.grid.ac/institutes/grid.5342.0", 
          "name": [
            "Center for Medical Genetics, Ghent University, Ghent, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vandesompele", 
        "givenName": "Jo", 
        "id": "sg:person.0615166774.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615166774.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1101/gr.077578.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000194137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1261/rna.2332406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000236999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2007-8-2-r19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007077528", 
          "https://doi.org/10.1186/gb-2007-8-2-r19"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gni178", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013863738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth717", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016130322", 
          "https://doi.org/10.1038/nmeth717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth717", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016130322", 
          "https://doi.org/10.1038/nmeth717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0403293101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024359349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024825726", 
          "https://doi.org/10.1038/nature03702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024825726", 
          "https://doi.org/10.1038/nature03702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1182/blood-2010-05-285395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026731433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2002-3-7-research0034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039751959", 
          "https://doi.org/10.1186/gb-2002-3-7-research0034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.7179508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041320458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2009-10-6-r64", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044394180", 
          "https://doi.org/10.1186/gb-2009-10-6-r64"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/physiolgenomics.00131.2010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046953155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1261/rna.939908", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048739042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049141786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2144/000112010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069095195"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012", 
    "datePublishedReg": "2012-01-01", 
    "description": "MicroRNAs (miRNAs) are an important class of gene regulators, acting on several aspects of cellular function such as differentiation, cell cycle control, and stemness. These master regulators constitute an invaluable source of biomarkers, and several miRNA signatures correlating with patient diagnosis, prognosis, and response to treatment have been identified. Within this exciting field of research, whole-genome RT-qPCR-based miRNA profiling in combination with a global mean normalization strategy has proven to be the most sensitive and accurate approach for high-throughput miRNA profiling (Mestdagh et al., Genome Biol 10:R64, 2009). In this chapter, we summarize the power of the previously described global mean normalization method in comparison to the multiple reference gene normalization method using the most stably expressed small RNA controls. In addition, we compare the original global mean method to a modified global mean normalization strategy based on the attribution of equal weight to each individual miRNA during normalization. This modified algorithm is implemented in Biogazelle's qbasePLUS software and is presented here for the first time.", 
    "editor": [
      {
        "familyName": "Fan", 
        "givenName": "Jian-Bing", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-61779-427-8_18", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3777440", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": {
      "isbn": [
        "978-1-61779-426-1", 
        "978-1-61779-427-8"
      ], 
      "name": "Next-Generation MicroRNA Expression Profiling Technology", 
      "type": "Book"
    }, 
    "name": "miRNA Expression Profiling: From Reference Genes to Global Mean Normalization", 
    "pagination": "261-272", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-61779-427-8_18"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a45b27ace8e5bf899e8de8f32c9ba959fccdaf3305a80291738fe1168f804f89"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034502204"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22144205"
        ]
      }
    ], 
    "publisher": {
      "location": "Totowa, NJ", 
      "name": "Humana Press", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-61779-427-8_18", 
      "https://app.dimensions.ai/details/publication/pub.1034502204"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T12:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000264.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-1-61779-427-8_18"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-61779-427-8_18'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-61779-427-8_18'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-61779-427-8_18'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-61779-427-8_18'


 

This table displays all metadata directly associated to this object as RDF triples.

174 TRIPLES      23 PREDICATES      50 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-61779-427-8_18 schema:about N03fd2e9c7f2d4e78a81d14fa33c9939e
2 N5affead1c3da430081617ab7aa56ad8c
3 N6caa622878c74c59bd3571afe4e34b1e
4 N8c4c71be9f8440ecbc917086d710de19
5 Nbfde14f159d145528a94ae7b23be73df
6 Nd78a91c423d2445e8259e2d5e05cf81a
7 Ne2ad5c76fb63490e8aee50d0eb896e17
8 anzsrc-for:06
9 anzsrc-for:0604
10 schema:author Nf70b9a652aa547c29cb2ca7b2ebfd5d4
11 schema:citation sg:pub.10.1038/nature03702
12 sg:pub.10.1038/nmeth717
13 sg:pub.10.1186/gb-2002-3-7-research0034
14 sg:pub.10.1186/gb-2007-8-2-r19
15 sg:pub.10.1186/gb-2009-10-6-r64
16 https://doi.org/10.1073/pnas.0403293101
17 https://doi.org/10.1093/nar/gkq342
18 https://doi.org/10.1093/nar/gni178
19 https://doi.org/10.1101/gr.077578.108
20 https://doi.org/10.1101/gr.7179508
21 https://doi.org/10.1152/physiolgenomics.00131.2010
22 https://doi.org/10.1182/blood-2010-05-285395
23 https://doi.org/10.1261/rna.2332406
24 https://doi.org/10.1261/rna.939908
25 https://doi.org/10.2144/000112010
26 schema:datePublished 2012
27 schema:datePublishedReg 2012-01-01
28 schema:description MicroRNAs (miRNAs) are an important class of gene regulators, acting on several aspects of cellular function such as differentiation, cell cycle control, and stemness. These master regulators constitute an invaluable source of biomarkers, and several miRNA signatures correlating with patient diagnosis, prognosis, and response to treatment have been identified. Within this exciting field of research, whole-genome RT-qPCR-based miRNA profiling in combination with a global mean normalization strategy has proven to be the most sensitive and accurate approach for high-throughput miRNA profiling (Mestdagh et al., Genome Biol 10:R64, 2009). In this chapter, we summarize the power of the previously described global mean normalization method in comparison to the multiple reference gene normalization method using the most stably expressed small RNA controls. In addition, we compare the original global mean method to a modified global mean normalization strategy based on the attribution of equal weight to each individual miRNA during normalization. This modified algorithm is implemented in Biogazelle's qbasePLUS software and is presented here for the first time.
29 schema:editor Ne6ce87cf5f5a4a35869888fa8e60610d
30 schema:genre chapter
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf N681a55efde044fccae5dc291ce9b822d
34 schema:name miRNA Expression Profiling: From Reference Genes to Global Mean Normalization
35 schema:pagination 261-272
36 schema:productId N5eaf09b2a7ca498ab905d4c72ceb94d0
37 N705ca088b3b544dab884e22aa06000ac
38 N8ad2b91550ce469b8f04fb0c1c2d724c
39 Ne099c2fc40a94b07b4d14e4ee963efae
40 schema:publisher N7b2f92c62f0646b093a0e04860da7323
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034502204
42 https://doi.org/10.1007/978-1-61779-427-8_18
43 schema:sdDatePublished 2019-04-15T12:33
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher N88d7e2e0184f43ad80eee12514b5239e
46 schema:url http://link.springer.com/10.1007/978-1-61779-427-8_18
47 sgo:license sg:explorer/license/
48 sgo:sdDataset chapters
49 rdf:type schema:Chapter
50 N03fd2e9c7f2d4e78a81d14fa33c9939e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
51 schema:name Humans
52 rdf:type schema:DefinedTerm
53 N51b35ede1b5249ceb03885ee7a5b9bf9 schema:name Biogazelle, Zwijnaarde, Belgium
54 rdf:type schema:Organization
55 N54231eda29124d3c8b7491f4f5132c9d rdf:first sg:person.01174241331.86
56 rdf:rest N9c7a245fc99b423886ca66897fb2fd1d
57 N5affead1c3da430081617ab7aa56ad8c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
58 schema:name RNA, Small Untranslated
59 rdf:type schema:DefinedTerm
60 N5eaf09b2a7ca498ab905d4c72ceb94d0 schema:name readcube_id
61 schema:value a45b27ace8e5bf899e8de8f32c9ba959fccdaf3305a80291738fe1168f804f89
62 rdf:type schema:PropertyValue
63 N681a55efde044fccae5dc291ce9b822d schema:isbn 978-1-61779-426-1
64 978-1-61779-427-8
65 schema:name Next-Generation MicroRNA Expression Profiling Technology
66 rdf:type schema:Book
67 N6caa622878c74c59bd3571afe4e34b1e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Gene Expression Profiling
69 rdf:type schema:DefinedTerm
70 N705ca088b3b544dab884e22aa06000ac schema:name pubmed_id
71 schema:value 22144205
72 rdf:type schema:PropertyValue
73 N7b2f92c62f0646b093a0e04860da7323 schema:location Totowa, NJ
74 schema:name Humana Press
75 rdf:type schema:Organisation
76 N88d7e2e0184f43ad80eee12514b5239e schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 N8ad2b91550ce469b8f04fb0c1c2d724c schema:name doi
79 schema:value 10.1007/978-1-61779-427-8_18
80 rdf:type schema:PropertyValue
81 N8c4c71be9f8440ecbc917086d710de19 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Gene Expression Regulation
83 rdf:type schema:DefinedTerm
84 N9c7a245fc99b423886ca66897fb2fd1d rdf:first sg:person.01337400337.70
85 rdf:rest Ndd7de06ef3e0480684c8bfeda58fde99
86 Nbcc3472a34c4459998cfb2bfd1479f57 schema:familyName Fan
87 schema:givenName Jian-Bing
88 rdf:type schema:Person
89 Nbd90a104ff5f46f884937ec17bc4125e schema:name Biogazelle, Zwijnaarde, Belgium
90 rdf:type schema:Organization
91 Nbfde14f159d145528a94ae7b23be73df schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Quality Control
93 rdf:type schema:DefinedTerm
94 Nd78a91c423d2445e8259e2d5e05cf81a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name MicroRNAs
96 rdf:type schema:DefinedTerm
97 Ndd7de06ef3e0480684c8bfeda58fde99 rdf:first sg:person.0615166774.28
98 rdf:rest rdf:nil
99 Ne099c2fc40a94b07b4d14e4ee963efae schema:name dimensions_id
100 schema:value pub.1034502204
101 rdf:type schema:PropertyValue
102 Ne2ad5c76fb63490e8aee50d0eb896e17 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Reference Standards
104 rdf:type schema:DefinedTerm
105 Ne6ce87cf5f5a4a35869888fa8e60610d rdf:first Nbcc3472a34c4459998cfb2bfd1479f57
106 rdf:rest rdf:nil
107 Nf70b9a652aa547c29cb2ca7b2ebfd5d4 rdf:first sg:person.0740673320.75
108 rdf:rest N54231eda29124d3c8b7491f4f5132c9d
109 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
110 schema:name Biological Sciences
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
113 schema:name Genetics
114 rdf:type schema:DefinedTerm
115 sg:grant.3777440 http://pending.schema.org/fundedItem sg:pub.10.1007/978-1-61779-427-8_18
116 rdf:type schema:MonetaryGrant
117 sg:person.01174241331.86 schema:affiliation https://www.grid.ac/institutes/grid.5342.0
118 schema:familyName Mestdagh
119 schema:givenName Pieter
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174241331.86
121 rdf:type schema:Person
122 sg:person.01337400337.70 schema:affiliation N51b35ede1b5249ceb03885ee7a5b9bf9
123 schema:familyName Hellemans
124 schema:givenName Jan
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337400337.70
126 rdf:type schema:Person
127 sg:person.0615166774.28 schema:affiliation https://www.grid.ac/institutes/grid.5342.0
128 schema:familyName Vandesompele
129 schema:givenName Jo
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615166774.28
131 rdf:type schema:Person
132 sg:person.0740673320.75 schema:affiliation Nbd90a104ff5f46f884937ec17bc4125e
133 schema:familyName D’haene
134 schema:givenName Barbara
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740673320.75
136 rdf:type schema:Person
137 sg:pub.10.1038/nature03702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024825726
138 https://doi.org/10.1038/nature03702
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/nmeth717 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016130322
141 https://doi.org/10.1038/nmeth717
142 rdf:type schema:CreativeWork
143 sg:pub.10.1186/gb-2002-3-7-research0034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039751959
144 https://doi.org/10.1186/gb-2002-3-7-research0034
145 rdf:type schema:CreativeWork
146 sg:pub.10.1186/gb-2007-8-2-r19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007077528
147 https://doi.org/10.1186/gb-2007-8-2-r19
148 rdf:type schema:CreativeWork
149 sg:pub.10.1186/gb-2009-10-6-r64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044394180
150 https://doi.org/10.1186/gb-2009-10-6-r64
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1073/pnas.0403293101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024359349
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1093/nar/gkq342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049141786
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1093/nar/gni178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013863738
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1101/gr.077578.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000194137
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1101/gr.7179508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041320458
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1152/physiolgenomics.00131.2010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046953155
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1182/blood-2010-05-285395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026731433
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1261/rna.2332406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000236999
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1261/rna.939908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048739042
169 rdf:type schema:CreativeWork
170 https://doi.org/10.2144/000112010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069095195
171 rdf:type schema:CreativeWork
172 https://www.grid.ac/institutes/grid.5342.0 schema:alternateName Ghent University
173 schema:name Center for Medical Genetics, Ghent University, Ghent, Belgium
174 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...