Genome-Wide In Vivo Cross-linking of Sequence-Specific Transcription Factors View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2012

AUTHORS

Xiao-Yong Li , Mark D. Biggin

ABSTRACT

Immunoprecipitation of cross-linked chromatin in combination with microarrays (ChIP-chip) or ultra high-throughput sequencing (ChIP-seq) is widely used to map genome-wide in vivo transcription factor binding. Both methods employ initial steps of in vivo cross-linking, chromatin isolation, DNA fragmentation, and immunoprecipitation. For ChIP-chip, the immunoprecipitated DNA samples are then amplified, labeled, and hybridized to DNA microarrays. For ChIP-seq, the immunoprecipitated DNA is prepared for a sequencing library, and then the library DNA fragments are sequenced using ultra high-throughput sequencing platform. The protocols described here have been developed for ChIP-chip and ChIP-seq analysis of sequence-specific transcription factor binding in Drosophila embryos. A series of controls establish that these protocols have high sensitivity and reproducibility and provide a quantitative measure of relative transcription factor occupancy. The quantitative nature of the assay is important because regulatory transcription factors bind to highly overlapping sets of thousands of genomic regions and the unique regulatory specificity of each factor is determined by relative moderate differences in occupancy between factors at commonly bound regions. More... »

PAGES

3-26

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-61779-376-9_1

DOI

http://dx.doi.org/10.1007/978-1-61779-376-9_1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020488215

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22113265


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromatin Immunoprecipitation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drosophila melanogaster", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transcription Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Lawrence Berkeley National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Xiao-Yong", 
        "id": "sg:person.01126523647.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126523647.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lawrence Berkeley National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Biggin", 
        "givenName": "Mark D.", 
        "id": "sg:person.01267332236.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267332236.24"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.cell.2007.05.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002139821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0060027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004484807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkp1012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007464382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/emboj/18.6.1598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008662670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s101420000021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013682328", 
          "https://doi.org/10.1007/s101420000021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/28.2.e4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013763748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkn488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014661090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1385/1-59259-681-9:497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018329763", 
          "https://doi.org/10.1385/1-59259-681-9:497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1141319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018702276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023911485", 
          "https://doi.org/10.1038/nrg2626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023911485", 
          "https://doi.org/10.1038/nrg2626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2008-9-9-r137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027608848", 
          "https://doi.org/10.1186/gb-2008-9-9-r137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2009-10-7-r80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031389085", 
          "https://doi.org/10.1186/gb-2009-10-7-r80"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0091-679x(08)60580-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031588299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth1068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036304799", 
          "https://doi.org/10.1038/nmeth1068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35054095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037596378", 
          "https://doi.org/10.1038/35054095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35054095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037596378", 
          "https://doi.org/10.1038/35054095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.290.5500.2306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040836033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0968-0004(99)01535-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044252082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.078212.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047542880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0905443106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048603640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.1000343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049334019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2009-10-3-r25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049583368", 
          "https://doi.org/10.1186/gb-2009-10-3-r25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkp536", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050917758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051483764", 
          "https://doi.org/10.1038/nbt.1505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052955805", 
          "https://doi.org/10.1038/nbt.1518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2144/000112268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069095389"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012", 
    "datePublishedReg": "2012-01-01", 
    "description": "Immunoprecipitation of cross-linked chromatin in combination with microarrays (ChIP-chip) or ultra high-throughput sequencing (ChIP-seq) is widely used to map genome-wide in vivo transcription factor binding. Both methods employ initial steps of in vivo cross-linking, chromatin isolation, DNA fragmentation, and immunoprecipitation. For ChIP-chip, the immunoprecipitated DNA samples are then amplified, labeled, and hybridized to DNA microarrays. For ChIP-seq, the immunoprecipitated DNA is prepared for a sequencing library, and then the library DNA fragments are sequenced using ultra high-throughput sequencing platform. The protocols described here have been developed for ChIP-chip and ChIP-seq analysis of sequence-specific transcription factor binding in Drosophila embryos. A series of controls establish that these protocols have high sensitivity and reproducibility and provide a quantitative measure of relative transcription factor occupancy. The quantitative nature of the assay is important because regulatory transcription factors bind to highly overlapping sets of thousands of genomic regions and the unique regulatory specificity of each factor is determined by relative moderate differences in occupancy between factors at commonly bound regions.", 
    "editor": [
      {
        "familyName": "Vancura", 
        "givenName": "Ales", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-61779-376-9_1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-61779-375-2", 
        "978-1-61779-376-9"
      ], 
      "name": "Transcriptional Regulation", 
      "type": "Book"
    }, 
    "name": "Genome-Wide In Vivo Cross-linking of Sequence-Specific Transcription Factors", 
    "pagination": "3-26", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-61779-376-9_1"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "619f8916e901f0c1d41bfc45b75b1a154752bde90a336cfb9dd21e2fceafecb6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020488215"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22113265"
        ]
      }
    ], 
    "publisher": {
      "location": "New York, NY", 
      "name": "Springer New York", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-61779-376-9_1", 
      "https://app.dimensions.ai/details/publication/pub.1020488215"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T18:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000255.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-1-61779-376-9_1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-61779-376-9_1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-61779-376-9_1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-61779-376-9_1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-61779-376-9_1'


 

This table displays all metadata directly associated to this object as RDF triples.

189 TRIPLES      23 PREDICATES      60 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-61779-376-9_1 schema:about N23c4a106dd1549279ffdef4eeb98db08
2 N2f24a40152b64432b78f39a8006dae23
3 N418d459b069041deb5b6675c83e2cc09
4 N7f8d2dd6820847b89c067fb344226817
5 N9a6154a8af3f4d7e88b38b6058b04023
6 Nb0353981f58a45aca6bd6a21a5af0794
7 Nebae8e6aa18c4c5180525e1378989ef2
8 anzsrc-for:06
9 anzsrc-for:0604
10 schema:author Nf9a4e012101840449dd73803b72ba647
11 schema:citation sg:pub.10.1007/s101420000021
12 sg:pub.10.1038/35054095
13 sg:pub.10.1038/nbt.1505
14 sg:pub.10.1038/nbt.1518
15 sg:pub.10.1038/nmeth1068
16 sg:pub.10.1038/nrg2626
17 sg:pub.10.1186/gb-2008-9-9-r137
18 sg:pub.10.1186/gb-2009-10-3-r25
19 sg:pub.10.1186/gb-2009-10-7-r80
20 sg:pub.10.1385/1-59259-681-9:497
21 https://doi.org/10.1016/j.cell.2007.05.009
22 https://doi.org/10.1016/s0091-679x(08)60580-4
23 https://doi.org/10.1016/s0968-0004(99)01535-2
24 https://doi.org/10.1073/pnas.0905443106
25 https://doi.org/10.1093/emboj/18.6.1598
26 https://doi.org/10.1093/nar/28.2.e4
27 https://doi.org/10.1093/nar/gkn488
28 https://doi.org/10.1093/nar/gkp1012
29 https://doi.org/10.1093/nar/gkp536
30 https://doi.org/10.1101/gr.078212.108
31 https://doi.org/10.1126/science.1141319
32 https://doi.org/10.1126/science.290.5500.2306
33 https://doi.org/10.1371/journal.pbio.0060027
34 https://doi.org/10.1371/journal.pbio.1000343
35 https://doi.org/10.2144/000112268
36 schema:datePublished 2012
37 schema:datePublishedReg 2012-01-01
38 schema:description Immunoprecipitation of cross-linked chromatin in combination with microarrays (ChIP-chip) or ultra high-throughput sequencing (ChIP-seq) is widely used to map genome-wide in vivo transcription factor binding. Both methods employ initial steps of in vivo cross-linking, chromatin isolation, DNA fragmentation, and immunoprecipitation. For ChIP-chip, the immunoprecipitated DNA samples are then amplified, labeled, and hybridized to DNA microarrays. For ChIP-seq, the immunoprecipitated DNA is prepared for a sequencing library, and then the library DNA fragments are sequenced using ultra high-throughput sequencing platform. The protocols described here have been developed for ChIP-chip and ChIP-seq analysis of sequence-specific transcription factor binding in Drosophila embryos. A series of controls establish that these protocols have high sensitivity and reproducibility and provide a quantitative measure of relative transcription factor occupancy. The quantitative nature of the assay is important because regulatory transcription factors bind to highly overlapping sets of thousands of genomic regions and the unique regulatory specificity of each factor is determined by relative moderate differences in occupancy between factors at commonly bound regions.
39 schema:editor Nb66b1a4852a2450285380da968805a4a
40 schema:genre chapter
41 schema:inLanguage en
42 schema:isAccessibleForFree false
43 schema:isPartOf Nad705859b95b44b3b73ed58d0af53052
44 schema:name Genome-Wide In Vivo Cross-linking of Sequence-Specific Transcription Factors
45 schema:pagination 3-26
46 schema:productId N2dbc5bf43e7f483a84d90c1792b1c63c
47 N6a7b88c402794ae79018722298d39389
48 N881b71db44b84dfca601e38ac6b27e93
49 Nbd4b99ead72d4b079e9ae5f4d2b4aff3
50 schema:publisher Nc329d759b45d45ba9c998e87f9d82e3b
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020488215
52 https://doi.org/10.1007/978-1-61779-376-9_1
53 schema:sdDatePublished 2019-04-15T18:10
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher Nc8df97fe42524ec6aa46967cb866ee6c
56 schema:url http://link.springer.com/10.1007/978-1-61779-376-9_1
57 sgo:license sg:explorer/license/
58 sgo:sdDataset chapters
59 rdf:type schema:Chapter
60 N0aeb70a5a51241e49183605d4a641b80 schema:familyName Vancura
61 schema:givenName Ales
62 rdf:type schema:Person
63 N23c4a106dd1549279ffdef4eeb98db08 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
64 schema:name Chromatin Immunoprecipitation
65 rdf:type schema:DefinedTerm
66 N2dbc5bf43e7f483a84d90c1792b1c63c schema:name dimensions_id
67 schema:value pub.1020488215
68 rdf:type schema:PropertyValue
69 N2f24a40152b64432b78f39a8006dae23 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Oligonucleotide Array Sequence Analysis
71 rdf:type schema:DefinedTerm
72 N418d459b069041deb5b6675c83e2cc09 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Animals
74 rdf:type schema:DefinedTerm
75 N6a7b88c402794ae79018722298d39389 schema:name readcube_id
76 schema:value 619f8916e901f0c1d41bfc45b75b1a154752bde90a336cfb9dd21e2fceafecb6
77 rdf:type schema:PropertyValue
78 N7f8d2dd6820847b89c067fb344226817 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Sequence Analysis, DNA
80 rdf:type schema:DefinedTerm
81 N881b71db44b84dfca601e38ac6b27e93 schema:name pubmed_id
82 schema:value 22113265
83 rdf:type schema:PropertyValue
84 N9a6154a8af3f4d7e88b38b6058b04023 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Transcription Factors
86 rdf:type schema:DefinedTerm
87 Nad705859b95b44b3b73ed58d0af53052 schema:isbn 978-1-61779-375-2
88 978-1-61779-376-9
89 schema:name Transcriptional Regulation
90 rdf:type schema:Book
91 Nb0353981f58a45aca6bd6a21a5af0794 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Genome
93 rdf:type schema:DefinedTerm
94 Nb66b1a4852a2450285380da968805a4a rdf:first N0aeb70a5a51241e49183605d4a641b80
95 rdf:rest rdf:nil
96 Nbd4b99ead72d4b079e9ae5f4d2b4aff3 schema:name doi
97 schema:value 10.1007/978-1-61779-376-9_1
98 rdf:type schema:PropertyValue
99 Nc329d759b45d45ba9c998e87f9d82e3b schema:location New York, NY
100 schema:name Springer New York
101 rdf:type schema:Organisation
102 Nc8df97fe42524ec6aa46967cb866ee6c schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 Ne96dc00533994f42894232fd2b46285c rdf:first sg:person.01267332236.24
105 rdf:rest rdf:nil
106 Nebae8e6aa18c4c5180525e1378989ef2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Drosophila melanogaster
108 rdf:type schema:DefinedTerm
109 Nf9a4e012101840449dd73803b72ba647 rdf:first sg:person.01126523647.16
110 rdf:rest Ne96dc00533994f42894232fd2b46285c
111 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
112 schema:name Biological Sciences
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
115 schema:name Genetics
116 rdf:type schema:DefinedTerm
117 sg:person.01126523647.16 schema:affiliation https://www.grid.ac/institutes/grid.184769.5
118 schema:familyName Li
119 schema:givenName Xiao-Yong
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126523647.16
121 rdf:type schema:Person
122 sg:person.01267332236.24 schema:affiliation https://www.grid.ac/institutes/grid.184769.5
123 schema:familyName Biggin
124 schema:givenName Mark D.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267332236.24
126 rdf:type schema:Person
127 sg:pub.10.1007/s101420000021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013682328
128 https://doi.org/10.1007/s101420000021
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/35054095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037596378
131 https://doi.org/10.1038/35054095
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/nbt.1505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051483764
134 https://doi.org/10.1038/nbt.1505
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/nbt.1518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052955805
137 https://doi.org/10.1038/nbt.1518
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/nmeth1068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036304799
140 https://doi.org/10.1038/nmeth1068
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/nrg2626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023911485
143 https://doi.org/10.1038/nrg2626
144 rdf:type schema:CreativeWork
145 sg:pub.10.1186/gb-2008-9-9-r137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027608848
146 https://doi.org/10.1186/gb-2008-9-9-r137
147 rdf:type schema:CreativeWork
148 sg:pub.10.1186/gb-2009-10-3-r25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049583368
149 https://doi.org/10.1186/gb-2009-10-3-r25
150 rdf:type schema:CreativeWork
151 sg:pub.10.1186/gb-2009-10-7-r80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031389085
152 https://doi.org/10.1186/gb-2009-10-7-r80
153 rdf:type schema:CreativeWork
154 sg:pub.10.1385/1-59259-681-9:497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018329763
155 https://doi.org/10.1385/1-59259-681-9:497
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.cell.2007.05.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002139821
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/s0091-679x(08)60580-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031588299
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/s0968-0004(99)01535-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044252082
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1073/pnas.0905443106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048603640
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1093/emboj/18.6.1598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008662670
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1093/nar/28.2.e4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013763748
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1093/nar/gkn488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014661090
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1093/nar/gkp1012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007464382
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1093/nar/gkp536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050917758
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1101/gr.078212.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047542880
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1126/science.1141319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018702276
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1126/science.290.5500.2306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040836033
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1371/journal.pbio.0060027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004484807
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1371/journal.pbio.1000343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049334019
184 rdf:type schema:CreativeWork
185 https://doi.org/10.2144/000112268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069095389
186 rdf:type schema:CreativeWork
187 https://www.grid.ac/institutes/grid.184769.5 schema:alternateName Lawrence Berkeley National Laboratory
188 schema:name Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
189 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...