Predicting Metabolic Pathways by Sub-network Extraction View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011-10-28

AUTHORS

Karoline Faust , Jacques van Helden

ABSTRACT

Various methods result in groups of functionally related genes obtained from genomes (operons, regulons, syntheny groups, and phylogenetic profiles), transcriptomes (co-expression groups) and proteomes (modules of interacting proteins). When such groups contain two or more enzyme-coding genes, graph analysis methods can be applied to extract a metabolic pathway that interconnects them. We describe here the way to use the Pathway extraction tool available on the NeAT Web server (http://rsat.ulb.ac.be/neat/) to piece together the metabolic pathway from a group of associated, enzyme-coding genes. The tool identifies the reactions that can be catalyzed by the products of the query genes (seed reactions), and applies sub-graph extraction algorithms to extract from a metabolic network a sub-network that connects the seed reactions. This sub-network represents the predicted metabolic pathway. We describe here the pathway prediction process in a step-by-step way, give hints about the main parametric choices, and illustrate how this tool can be used to extract metabolic pathways from bacterial genomes, on the basis of two study cases: the isoleucine–valine operon in Escherichia coli and a predicted operon in Cupriavidus (Ralstonia) metallidurans. More... »

PAGES

107-130

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-61779-361-5_7

DOI

http://dx.doi.org/10.1007/978-1-61779-361-5_7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038537805

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22144151


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cupriavidus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Enzymes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Escherichia coli", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metabolic Networks and Pathways", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Operon", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Systems Biology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Microbiology Unit (MICR), Department of Applied Biological Sciences (DBIT), Vrije Universiteit Brussel, Bruxelles, Belgium", 
          "id": "http://www.grid.ac/institutes/grid.8767.e", 
          "name": [
            "Department of Structural Biology, Research group of Bioinformatics and (eco-)systems biology, Brussels, Belgium", 
            "Microbiology Unit (MICR), Department of Applied Biological Sciences (DBIT), Vrije Universiteit Brussel, Bruxelles, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Faust", 
        "givenName": "Karoline", 
        "id": "sg:person.01054521721.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054521721.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de Bioinformatique des G\u00e9nomes et des R\u00e9seaux (BiGRe), Universit\u00e9 Libre de Bruxelles, Bruxelles, Belgium", 
          "id": "http://www.grid.ac/institutes/grid.4989.c", 
          "name": [
            "Laboratoire de Bioinformatique des G\u00e9nomes et des R\u00e9seaux (BiGRe), Universit\u00e9 Libre de Bruxelles, Bruxelles, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Helden", 
        "givenName": "Jacques", 
        "id": "sg:person.0626672543.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626672543.46"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2011-10-28", 
    "datePublishedReg": "2011-10-28", 
    "description": "Various methods result in groups of functionally related genes obtained from genomes (operons, regulons, syntheny groups, and phylogenetic profiles), transcriptomes (co-expression groups) and proteomes (modules of interacting proteins). When such groups contain two or more enzyme-coding genes, graph analysis methods can be applied to extract a metabolic pathway that interconnects them. We describe here the way to use the Pathway extraction tool available on the NeAT Web server (http://rsat.ulb.ac.be/neat/) to piece together the metabolic pathway from a group of associated, enzyme-coding genes. The tool identifies the reactions that can be catalyzed by the products of the query genes (seed reactions), and applies sub-graph extraction algorithms to extract from a metabolic network a sub-network that connects the seed reactions. This sub-network represents the predicted metabolic pathway. We describe here the pathway prediction process in a step-by-step way, give hints about the main parametric choices, and illustrate how this tool can be used to extract metabolic pathways from bacterial genomes, on the basis of two study cases: the isoleucine\u2013valine operon in Escherichia coli and a predicted operon in Cupriavidus (Ralstonia) metallidurans.", 
    "editor": [
      {
        "familyName": "van Helden", 
        "givenName": "Jacques", 
        "type": "Person"
      }, 
      {
        "familyName": "Toussaint", 
        "givenName": "Ariane", 
        "type": "Person"
      }, 
      {
        "familyName": "Thieffry", 
        "givenName": "Denis", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-61779-361-5_7", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-61779-360-8", 
        "978-1-61779-361-5"
      ], 
      "name": "Bacterial Molecular Networks", 
      "type": "Book"
    }, 
    "keywords": [
      "enzyme-coding genes", 
      "metabolic pathways", 
      "isoleucine-valine operons", 
      "sub-network extraction", 
      "bacterial genomes", 
      "query gene", 
      "seed reactions", 
      "metabolic networks", 
      "Escherichia coli", 
      "Cupriavidus metallidurans", 
      "genes", 
      "operon", 
      "genome", 
      "pathway", 
      "transcriptome", 
      "proteome", 
      "metallidurans", 
      "coli", 
      "web server", 
      "tool", 
      "basis", 
      "such groups", 
      "step", 
      "products", 
      "process", 
      "reaction", 
      "hints", 
      "group", 
      "graph analysis methods", 
      "network", 
      "way", 
      "extraction", 
      "step way", 
      "study case", 
      "method", 
      "analysis method", 
      "choice", 
      "cases", 
      "server", 
      "prediction process", 
      "parametric choices", 
      "extraction tool", 
      "more enzyme-coding genes", 
      "Pathway extraction tool", 
      "NeAT Web server", 
      "sub-graph extraction", 
      "pathway prediction process", 
      "main parametric choices"
    ], 
    "name": "Predicting Metabolic Pathways by Sub-network Extraction", 
    "pagination": "107-130", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038537805"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-61779-361-5_7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22144151"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-61779-361-5_7", 
      "https://app.dimensions.ai/details/publication/pub.1038537805"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_358.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-61779-361-5_7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-61779-361-5_7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-61779-361-5_7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-61779-361-5_7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-61779-361-5_7'


 

This table displays all metadata directly associated to this object as RDF triples.

173 TRIPLES      23 PREDICATES      84 URIs      77 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-61779-361-5_7 schema:about N0d36bc4faf74473abb2fe893b672fbc0
2 N42308c9e8c414b4586a534a98ebe1b94
3 N4ae310eefa1a429994732af5d5e31bbc
4 N6da90c617b6143b1841c15f69d4858f6
5 N81884cde66294fabb1f33bf20d95684e
6 N83903e42f6a645b38e21ecc24a370c89
7 Nbd9ec1b7d28148018b2d0d8332d7ea3e
8 Ne20720d6376a461eb869567865625bd5
9 Ne98e933982e34dd49641ea544e107283
10 Nf090c7def6124f50af050c857b17094b
11 anzsrc-for:06
12 anzsrc-for:0604
13 schema:author Ndacf425880794743a4ceb81459b07ae0
14 schema:datePublished 2011-10-28
15 schema:datePublishedReg 2011-10-28
16 schema:description Various methods result in groups of functionally related genes obtained from genomes (operons, regulons, syntheny groups, and phylogenetic profiles), transcriptomes (co-expression groups) and proteomes (modules of interacting proteins). When such groups contain two or more enzyme-coding genes, graph analysis methods can be applied to extract a metabolic pathway that interconnects them. We describe here the way to use the Pathway extraction tool available on the NeAT Web server (http://rsat.ulb.ac.be/neat/) to piece together the metabolic pathway from a group of associated, enzyme-coding genes. The tool identifies the reactions that can be catalyzed by the products of the query genes (seed reactions), and applies sub-graph extraction algorithms to extract from a metabolic network a sub-network that connects the seed reactions. This sub-network represents the predicted metabolic pathway. We describe here the pathway prediction process in a step-by-step way, give hints about the main parametric choices, and illustrate how this tool can be used to extract metabolic pathways from bacterial genomes, on the basis of two study cases: the isoleucine–valine operon in Escherichia coli and a predicted operon in Cupriavidus (Ralstonia) metallidurans.
17 schema:editor N9796c34eb2a545ff99163659b9d6efaf
18 schema:genre chapter
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N994eb1a23dc04a09b268e06455cc760a
22 schema:keywords Cupriavidus metallidurans
23 Escherichia coli
24 NeAT Web server
25 Pathway extraction tool
26 analysis method
27 bacterial genomes
28 basis
29 cases
30 choice
31 coli
32 enzyme-coding genes
33 extraction
34 extraction tool
35 genes
36 genome
37 graph analysis methods
38 group
39 hints
40 isoleucine-valine operons
41 main parametric choices
42 metabolic networks
43 metabolic pathways
44 metallidurans
45 method
46 more enzyme-coding genes
47 network
48 operon
49 parametric choices
50 pathway
51 pathway prediction process
52 prediction process
53 process
54 products
55 proteome
56 query gene
57 reaction
58 seed reactions
59 server
60 step
61 step way
62 study case
63 sub-graph extraction
64 sub-network extraction
65 such groups
66 tool
67 transcriptome
68 way
69 web server
70 schema:name Predicting Metabolic Pathways by Sub-network Extraction
71 schema:pagination 107-130
72 schema:productId Na26c3e4907754891998c55712c00c13c
73 Nb6207f3a96d5459c860e5bc230c54599
74 Nef6cc16a35c64dce8b0e2989b6ff4ca5
75 schema:publisher N2259327fe0814b2db79ee215ab31ff33
76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038537805
77 https://doi.org/10.1007/978-1-61779-361-5_7
78 schema:sdDatePublished 2022-01-01T19:20
79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
80 schema:sdPublisher Ne79790d34a344e7a9114ba503557bb33
81 schema:url https://doi.org/10.1007/978-1-61779-361-5_7
82 sgo:license sg:explorer/license/
83 sgo:sdDataset chapters
84 rdf:type schema:Chapter
85 N0d36bc4faf74473abb2fe893b672fbc0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Cupriavidus
87 rdf:type schema:DefinedTerm
88 N21003e0a24544724a21e0466798d8e78 schema:familyName Thieffry
89 schema:givenName Denis
90 rdf:type schema:Person
91 N2259327fe0814b2db79ee215ab31ff33 schema:name Springer Nature
92 rdf:type schema:Organisation
93 N22f1750e00724d87bbd591a1e9239a45 schema:familyName Toussaint
94 schema:givenName Ariane
95 rdf:type schema:Person
96 N42308c9e8c414b4586a534a98ebe1b94 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Escherichia coli
98 rdf:type schema:DefinedTerm
99 N436b86cf7ecd4563bf97f951054a4e37 schema:familyName van Helden
100 schema:givenName Jacques
101 rdf:type schema:Person
102 N4ae310eefa1a429994732af5d5e31bbc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Metabolic Networks and Pathways
104 rdf:type schema:DefinedTerm
105 N4dbd97418d574f60a47e59b44c1b28a3 rdf:first N22f1750e00724d87bbd591a1e9239a45
106 rdf:rest N56bd0e359eeb4ab5997803e94d7e101f
107 N56bd0e359eeb4ab5997803e94d7e101f rdf:first N21003e0a24544724a21e0466798d8e78
108 rdf:rest rdf:nil
109 N6da90c617b6143b1841c15f69d4858f6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Operon
111 rdf:type schema:DefinedTerm
112 N81884cde66294fabb1f33bf20d95684e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Enzymes
114 rdf:type schema:DefinedTerm
115 N83903e42f6a645b38e21ecc24a370c89 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Genome, Bacterial
117 rdf:type schema:DefinedTerm
118 N9796c34eb2a545ff99163659b9d6efaf rdf:first N436b86cf7ecd4563bf97f951054a4e37
119 rdf:rest N4dbd97418d574f60a47e59b44c1b28a3
120 N994eb1a23dc04a09b268e06455cc760a schema:isbn 978-1-61779-360-8
121 978-1-61779-361-5
122 schema:name Bacterial Molecular Networks
123 rdf:type schema:Book
124 Na26c3e4907754891998c55712c00c13c schema:name doi
125 schema:value 10.1007/978-1-61779-361-5_7
126 rdf:type schema:PropertyValue
127 Nb6207f3a96d5459c860e5bc230c54599 schema:name pubmed_id
128 schema:value 22144151
129 rdf:type schema:PropertyValue
130 Nbd9ec1b7d28148018b2d0d8332d7ea3e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Models, Biological
132 rdf:type schema:DefinedTerm
133 Ndacf425880794743a4ceb81459b07ae0 rdf:first sg:person.01054521721.78
134 rdf:rest Nfbbb46a934144fbea9499a39bf9b768e
135 Ne20720d6376a461eb869567865625bd5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Algorithms
137 rdf:type schema:DefinedTerm
138 Ne79790d34a344e7a9114ba503557bb33 schema:name Springer Nature - SN SciGraph project
139 rdf:type schema:Organization
140 Ne98e933982e34dd49641ea544e107283 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Systems Biology
142 rdf:type schema:DefinedTerm
143 Nef6cc16a35c64dce8b0e2989b6ff4ca5 schema:name dimensions_id
144 schema:value pub.1038537805
145 rdf:type schema:PropertyValue
146 Nf090c7def6124f50af050c857b17094b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Software
148 rdf:type schema:DefinedTerm
149 Nfbbb46a934144fbea9499a39bf9b768e rdf:first sg:person.0626672543.46
150 rdf:rest rdf:nil
151 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
152 schema:name Biological Sciences
153 rdf:type schema:DefinedTerm
154 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
155 schema:name Genetics
156 rdf:type schema:DefinedTerm
157 sg:person.01054521721.78 schema:affiliation grid-institutes:grid.8767.e
158 schema:familyName Faust
159 schema:givenName Karoline
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054521721.78
161 rdf:type schema:Person
162 sg:person.0626672543.46 schema:affiliation grid-institutes:grid.4989.c
163 schema:familyName van Helden
164 schema:givenName Jacques
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626672543.46
166 rdf:type schema:Person
167 grid-institutes:grid.4989.c schema:alternateName Laboratoire de Bioinformatique des Génomes et des Réseaux (BiGRe), Université Libre de Bruxelles, Bruxelles, Belgium
168 schema:name Laboratoire de Bioinformatique des Génomes et des Réseaux (BiGRe), Université Libre de Bruxelles, Bruxelles, Belgium
169 rdf:type schema:Organization
170 grid-institutes:grid.8767.e schema:alternateName Microbiology Unit (MICR), Department of Applied Biological Sciences (DBIT), Vrije Universiteit Brussel, Bruxelles, Belgium
171 schema:name Department of Structural Biology, Research group of Bioinformatics and (eco-)systems biology, Brussels, Belgium
172 Microbiology Unit (MICR), Department of Applied Biological Sciences (DBIT), Vrije Universiteit Brussel, Bruxelles, Belgium
173 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...