Imputing and Predicting Quantitative Genetic Interactions in Epistatic MAPs View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2011-07-16

AUTHORS

Colm Ryan , Gerard Cagney , Nevan Krogan , Pádraig Cunningham , Derek Greene

ABSTRACT

Mapping epistatic (or genetic) interactions has emerged as an important network biology approach for establishing functional relationships among genes and proteins. Epistasis networks are complementary to physical protein interaction networks, providing valuable insight into both the function of individual genes and the overall wiring of the cell. A high-throughput method termed “epistatic mini array profiles” (E-MAPs) was recently developed in yeast to quantify alleviating or aggravating interactions between gene pairs. The typical output of an E-MAP experiment is a large symmetric matrix of interaction scores. One problem with this data is the large amount of missing values – interactions that cannot be measured during the high-throughput process or whose measurements were discarded due to quality filtering steps. These missing values can reduce the effectiveness of some data analysis techniques and prevent the use of others. Here, we discuss one solution to this problem, imputation using nearest neighbors, and give practical examples of the use of a freely available implementation of this method. More... »

PAGES

353-361

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-61779-276-2_17

DOI

http://dx.doi.org/10.1007/978-1-61779-276-2_17

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049161391

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21877290


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Epistasis, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Regulatory Networks", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "High-Throughput Screening Assays", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Interaction Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Saccharomyces cerevisiae", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Saccharomyces cerevisiae Proteins", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Computer Science and Informatics, University College Dublin, Dublin, Ireland", 
          "id": "http://www.grid.ac/institutes/grid.7886.1", 
          "name": [
            "School of Computer Science and Informatics, University College Dublin, Dublin, Ireland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ryan", 
        "givenName": "Colm", 
        "id": "sg:person.01163124277.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163124277.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland", 
          "id": "http://www.grid.ac/institutes/grid.7886.1", 
          "name": [
            "Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cagney", 
        "givenName": "Gerard", 
        "id": "sg:person.01014656545.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014656545.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.266102.1", 
          "name": [
            "Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krogan", 
        "givenName": "Nevan", 
        "id": "sg:person.0613100042.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613100042.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Computer Science and Informatics, University College Dublin, Dublin, Ireland", 
          "id": "http://www.grid.ac/institutes/grid.7886.1", 
          "name": [
            "School of Computer Science and Informatics, University College Dublin, Dublin, Ireland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cunningham", 
        "givenName": "P\u00e1draig", 
        "id": "sg:person.01055764455.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055764455.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Computer Science and Informatics, University College Dublin, Dublin, Ireland", 
          "id": "http://www.grid.ac/institutes/grid.7886.1", 
          "name": [
            "School of Computer Science and Informatics, University College Dublin, Dublin, Ireland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Greene", 
        "givenName": "Derek", 
        "id": "sg:person.016377157343.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016377157343.43"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2011-07-16", 
    "datePublishedReg": "2011-07-16", 
    "description": "Mapping epistatic (or genetic) interactions has emerged as an important network biology approach for establishing functional relationships among genes and proteins. Epistasis networks are complementary to physical protein interaction networks, providing valuable insight into both the function of individual genes and the overall wiring of the cell. A high-throughput method termed \u201cepistatic mini array profiles\u201d (E-MAPs) was recently developed in yeast to quantify alleviating or aggravating interactions between gene pairs. The typical output of an E-MAP experiment is a large symmetric matrix of interaction scores. One problem with this data is the large amount of missing values \u2013 interactions that cannot be measured during the high-throughput process or whose measurements were discarded due to quality filtering steps. These missing values can reduce the effectiveness of some data analysis techniques and prevent the use of others. Here, we discuss one solution to this problem, imputation using nearest neighbors, and give practical examples of the use of a freely available implementation of this method.", 
    "editor": [
      {
        "familyName": "Cagney", 
        "givenName": "Gerard", 
        "type": "Person"
      }, 
      {
        "familyName": "Emili", 
        "givenName": "Andrew", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-61779-276-2_17", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-1-61779-275-5", 
        "978-1-61779-276-2"
      ], 
      "name": "Network Biology", 
      "type": "Book"
    }, 
    "keywords": [
      "physical protein interaction networks", 
      "quantitative genetic interactions", 
      "network biology approach", 
      "protein interaction networks", 
      "large symmetric matrices", 
      "quality filtering steps", 
      "genetic interactions", 
      "gene pairs", 
      "individual genes", 
      "biology approach", 
      "high-throughput method", 
      "epistatic interactions", 
      "interaction networks", 
      "epistasis networks", 
      "symmetric matrices", 
      "array profiles", 
      "genes", 
      "practical examples", 
      "available implementations", 
      "functional relationship", 
      "filtering step", 
      "data analysis technique", 
      "nearest neighbors", 
      "yeast", 
      "interaction scores", 
      "typical output", 
      "high-throughput process", 
      "protein", 
      "analysis techniques", 
      "problem", 
      "valuable insights", 
      "interaction", 
      "cells", 
      "network", 
      "imputing", 
      "imputation", 
      "solution", 
      "matrix", 
      "insights", 
      "large amount", 
      "neighbors", 
      "function", 
      "pairs", 
      "approach", 
      "output", 
      "technique", 
      "effectiveness", 
      "maps", 
      "implementation", 
      "profile", 
      "measurements", 
      "step", 
      "experiments", 
      "process", 
      "wiring", 
      "amount", 
      "values", 
      "relationship", 
      "data", 
      "use", 
      "example", 
      "method", 
      "scores"
    ], 
    "name": "Imputing and Predicting Quantitative Genetic Interactions in Epistatic MAPs", 
    "pagination": "353-361", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049161391"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-61779-276-2_17"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21877290"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-61779-276-2_17", 
      "https://app.dimensions.ai/details/publication/pub.1049161391"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-11-24T21:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/chapter/chapter_372.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-61779-276-2_17"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-61779-276-2_17'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-61779-276-2_17'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-61779-276-2_17'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-61779-276-2_17'


 

This table displays all metadata directly associated to this object as RDF triples.

196 TRIPLES      22 PREDICATES      96 URIs      89 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-61779-276-2_17 schema:about N2bb9794af71841359b6285b44b5324c6
2 N5719253d19384ccb8b0669581b7797ac
3 N5edb5294fc584887b6b3c81188595dc4
4 N6f9dedc3670d4dc9a06f5b5dccc6053a
5 Na3e6a38b1a6a4757b4840074a6d5fca0
6 Na468dffa2d6844dab071d9466e254800
7 Nc7435cdb645b4bee8a23a12a7ac774ad
8 Ne8e2cd8872104e8296bd3094a216e2b6
9 anzsrc-for:06
10 anzsrc-for:0604
11 schema:author N138752b641124d68bfce3afeb3030333
12 schema:datePublished 2011-07-16
13 schema:datePublishedReg 2011-07-16
14 schema:description Mapping epistatic (or genetic) interactions has emerged as an important network biology approach for establishing functional relationships among genes and proteins. Epistasis networks are complementary to physical protein interaction networks, providing valuable insight into both the function of individual genes and the overall wiring of the cell. A high-throughput method termed “epistatic mini array profiles” (E-MAPs) was recently developed in yeast to quantify alleviating or aggravating interactions between gene pairs. The typical output of an E-MAP experiment is a large symmetric matrix of interaction scores. One problem with this data is the large amount of missing values – interactions that cannot be measured during the high-throughput process or whose measurements were discarded due to quality filtering steps. These missing values can reduce the effectiveness of some data analysis techniques and prevent the use of others. Here, we discuss one solution to this problem, imputation using nearest neighbors, and give practical examples of the use of a freely available implementation of this method.
15 schema:editor N69a00620c5fe42458cf56781c6333b76
16 schema:genre chapter
17 schema:isAccessibleForFree true
18 schema:isPartOf N91a507f919f64397b2082cb16c469374
19 schema:keywords amount
20 analysis techniques
21 approach
22 array profiles
23 available implementations
24 biology approach
25 cells
26 data
27 data analysis technique
28 effectiveness
29 epistasis networks
30 epistatic interactions
31 example
32 experiments
33 filtering step
34 function
35 functional relationship
36 gene pairs
37 genes
38 genetic interactions
39 high-throughput method
40 high-throughput process
41 implementation
42 imputation
43 imputing
44 individual genes
45 insights
46 interaction
47 interaction networks
48 interaction scores
49 large amount
50 large symmetric matrices
51 maps
52 matrix
53 measurements
54 method
55 nearest neighbors
56 neighbors
57 network
58 network biology approach
59 output
60 pairs
61 physical protein interaction networks
62 practical examples
63 problem
64 process
65 profile
66 protein
67 protein interaction networks
68 quality filtering steps
69 quantitative genetic interactions
70 relationship
71 scores
72 solution
73 step
74 symmetric matrices
75 technique
76 typical output
77 use
78 valuable insights
79 values
80 wiring
81 yeast
82 schema:name Imputing and Predicting Quantitative Genetic Interactions in Epistatic MAPs
83 schema:pagination 353-361
84 schema:productId N3b0cc3ebcc484328bc9efd3ef30c7f66
85 N9b598a1c132d4fbc824f12e9f8525e7b
86 Nda038b0b8c68494bb96e92436e47cb5c
87 schema:publisher N7fdedc9f404c41c4ac1a87cf0fac9c81
88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049161391
89 https://doi.org/10.1007/978-1-61779-276-2_17
90 schema:sdDatePublished 2022-11-24T21:17
91 schema:sdLicense https://scigraph.springernature.com/explorer/license/
92 schema:sdPublisher N4350986a73b34d429dc43c041c447d17
93 schema:url https://doi.org/10.1007/978-1-61779-276-2_17
94 sgo:license sg:explorer/license/
95 sgo:sdDataset chapters
96 rdf:type schema:Chapter
97 N05a4c7b0415441a294f2e1e17d98d6f4 schema:familyName Emili
98 schema:givenName Andrew
99 rdf:type schema:Person
100 N138752b641124d68bfce3afeb3030333 rdf:first sg:person.01163124277.61
101 rdf:rest N1cc7286db70148e28ec6fffbb3db8427
102 N1cc7286db70148e28ec6fffbb3db8427 rdf:first sg:person.01014656545.85
103 rdf:rest Nd04c5aebb1c04f5da63b41449b596065
104 N2bb9794af71841359b6285b44b5324c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Protein Interaction Mapping
106 rdf:type schema:DefinedTerm
107 N3b0cc3ebcc484328bc9efd3ef30c7f66 schema:name doi
108 schema:value 10.1007/978-1-61779-276-2_17
109 rdf:type schema:PropertyValue
110 N4350986a73b34d429dc43c041c447d17 schema:name Springer Nature - SN SciGraph project
111 rdf:type schema:Organization
112 N5719253d19384ccb8b0669581b7797ac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Gene Regulatory Networks
114 rdf:type schema:DefinedTerm
115 N5edb5294fc584887b6b3c81188595dc4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Epistasis, Genetic
117 rdf:type schema:DefinedTerm
118 N69a00620c5fe42458cf56781c6333b76 rdf:first N82538111cce3498d94a508837dc93f10
119 rdf:rest N6c95494797394e11a27d7c92f32b2db0
120 N6c95494797394e11a27d7c92f32b2db0 rdf:first N05a4c7b0415441a294f2e1e17d98d6f4
121 rdf:rest rdf:nil
122 N6f9dedc3670d4dc9a06f5b5dccc6053a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Predictive Value of Tests
124 rdf:type schema:DefinedTerm
125 N7fdedc9f404c41c4ac1a87cf0fac9c81 schema:name Springer Nature
126 rdf:type schema:Organisation
127 N82538111cce3498d94a508837dc93f10 schema:familyName Cagney
128 schema:givenName Gerard
129 rdf:type schema:Person
130 N91a507f919f64397b2082cb16c469374 schema:isbn 978-1-61779-275-5
131 978-1-61779-276-2
132 schema:name Network Biology
133 rdf:type schema:Book
134 N9b598a1c132d4fbc824f12e9f8525e7b schema:name dimensions_id
135 schema:value pub.1049161391
136 rdf:type schema:PropertyValue
137 Na3e6a38b1a6a4757b4840074a6d5fca0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name High-Throughput Screening Assays
139 rdf:type schema:DefinedTerm
140 Na468dffa2d6844dab071d9466e254800 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Saccharomyces cerevisiae
142 rdf:type schema:DefinedTerm
143 Nc7435cdb645b4bee8a23a12a7ac774ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Models, Genetic
145 rdf:type schema:DefinedTerm
146 Nd04c5aebb1c04f5da63b41449b596065 rdf:first sg:person.0613100042.95
147 rdf:rest Nf5e7c710801441358238bc3d90a0e877
148 Nd96fb11eb1ef4d98b4c0e94cfc92cd3e rdf:first sg:person.016377157343.43
149 rdf:rest rdf:nil
150 Nda038b0b8c68494bb96e92436e47cb5c schema:name pubmed_id
151 schema:value 21877290
152 rdf:type schema:PropertyValue
153 Ne8e2cd8872104e8296bd3094a216e2b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Saccharomyces cerevisiae Proteins
155 rdf:type schema:DefinedTerm
156 Nf5e7c710801441358238bc3d90a0e877 rdf:first sg:person.01055764455.19
157 rdf:rest Nd96fb11eb1ef4d98b4c0e94cfc92cd3e
158 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
159 schema:name Biological Sciences
160 rdf:type schema:DefinedTerm
161 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
162 schema:name Genetics
163 rdf:type schema:DefinedTerm
164 sg:person.01014656545.85 schema:affiliation grid-institutes:grid.7886.1
165 schema:familyName Cagney
166 schema:givenName Gerard
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014656545.85
168 rdf:type schema:Person
169 sg:person.01055764455.19 schema:affiliation grid-institutes:grid.7886.1
170 schema:familyName Cunningham
171 schema:givenName Pádraig
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055764455.19
173 rdf:type schema:Person
174 sg:person.01163124277.61 schema:affiliation grid-institutes:grid.7886.1
175 schema:familyName Ryan
176 schema:givenName Colm
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163124277.61
178 rdf:type schema:Person
179 sg:person.016377157343.43 schema:affiliation grid-institutes:grid.7886.1
180 schema:familyName Greene
181 schema:givenName Derek
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016377157343.43
183 rdf:type schema:Person
184 sg:person.0613100042.95 schema:affiliation grid-institutes:grid.266102.1
185 schema:familyName Krogan
186 schema:givenName Nevan
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613100042.95
188 rdf:type schema:Person
189 grid-institutes:grid.266102.1 schema:alternateName Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA, USA
190 schema:name Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA, USA
191 rdf:type schema:Organization
192 grid-institutes:grid.7886.1 schema:alternateName Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
193 School of Computer Science and Informatics, University College Dublin, Dublin, Ireland
194 schema:name Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
195 School of Computer Science and Informatics, University College Dublin, Dublin, Ireland
196 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...