Engineering Exon-Skipping Vectors Expressing U7 snRNA Constructs for Duchenne Muscular Dystrophy Gene Therapy View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2010-12-08

AUTHORS

Aurélie Goyenvalle , Kay E. Davies

ABSTRACT

Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disorder caused by mutations in the dystrophin gene. In most cases, the open-reading frame is disrupted which results in the absence of a functional protein. Antisense-mediated exon skipping is one of the most promising approaches for the treatment of DMD and has recently been shown to correct the reading frame and restore dystrophin expression in vitro and in vivo. Specific exon skipping can be achieved using synthetic oligonucleotides or viral -vectors encoding modified snRNAs, by masking important splicing sites. We have recently demonstrated that enhanced exon skipping can be induced by a U7 snRNA carrying binding sites for the heterogeneous ribonucleoprotein A1. In DMD patient cells, bifunctional U7 snRNAs harboring silencer motifs induce complete skipping of exon 51 and thus restore dystrophin expression to near wild-type levels. Furthermore, we have confirmed the efficacy of these constructs in vivo in transgenic mice carrying the entire human DMD locus after intramuscular injection of AAV vectors encoding the bifunctional U7 snRNA. These new constructs are very promising for the optimization of therapeutic exon skipping for DMD, but also offer powerful and versatile tools to modulate pre-mRNA splicing in a wide range of applications. Here, we outline the design of these U7 snRNA constructs to achieve efficient exon skipping of the dystrophin gene. We also describe methods to evaluate the efficiency of such U7 snRNA constructs in vitro in DMD patient cells and in vivo in the transgenic hDMD mouse model, using lentiviral and recombinant adeno-associated viral vectors, respectively. More... »

PAGES

179-196

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-61737-982-6_11

DOI

http://dx.doi.org/10.1007/978-1-61737-982-6_11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029388896

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21194028


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1004", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical Biotechnology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Alternative Splicing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA, Antisense", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dependovirus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dystrophin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Transfer Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Therapy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Vectors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Heterogeneous Nuclear Ribonucleoprotein A1", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Heterogeneous-Nuclear Ribonucleoprotein Group A-B", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice, Transgenic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Muscular Dystrophy, Duchenne", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Small Nuclear", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reading Frames", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Oxford", 
          "id": "https://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "MRC Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, South Parks Road, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goyenvalle", 
        "givenName": "Aur\u00e9lie", 
        "id": "sg:person.01200571036.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200571036.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oxford", 
          "id": "https://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "MRC Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, South Parks Road, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Davies", 
        "givenName": "Kay E.", 
        "id": "sg:person.015506710312.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015506710312.55"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/hmg/8.13.2415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004341920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/mt.2009.113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004419215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/7.7.1083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004919532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jgm.295", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004977651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m709410200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016206375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1196/annals.1348.058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021776621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.98.1.42", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022610150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gad.1195304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024831634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nsb887", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026008206", 
          "https://doi.org/10.1038/nsb887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0960-8966(02)00086-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034308763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0960-8966(02)00086-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034308763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00018-004-4190-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035918405", 
          "https://doi.org/10.1007/s00018-004-4190-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/ddg100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036654385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/mt.2008.287", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039140072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/sj.mt.6300095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040074992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0888-7543(88)90113-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040394007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s000180300047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041592384", 
          "https://doi.org/10.1007/s000180300047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.142302299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043893238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymthe.2004.05.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045117278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1073774", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049709064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/10.15.1547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053317642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/oli.2005.15.284", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059303275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1104297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062451121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078924717", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082383114", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/j.1460-2075.1994.tb06369.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082392304"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-12-08", 
    "datePublishedReg": "2010-12-08", 
    "description": "Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disorder caused by mutations in the dystrophin gene. In most cases, the open-reading frame is disrupted which results in the absence of a functional protein. Antisense-mediated exon skipping is one of the most promising approaches for the treatment of DMD and has recently been shown to correct the reading frame and restore dystrophin expression in vitro and in vivo. Specific exon skipping can be achieved using synthetic oligonucleotides or viral -vectors encoding modified snRNAs, by masking important splicing sites. We have recently demonstrated that enhanced exon skipping can be induced by a U7 snRNA carrying binding sites for the heterogeneous ribonucleoprotein A1. In DMD patient cells, bifunctional U7 snRNAs harboring silencer motifs induce complete skipping of exon 51 and thus restore dystrophin expression to near wild-type levels. Furthermore, we have confirmed the efficacy of these constructs in vivo in transgenic mice carrying the entire human DMD locus after intramuscular injection of AAV vectors encoding the bifunctional U7 snRNA. These new constructs are very promising for the optimization of therapeutic exon skipping for DMD, but also offer powerful and versatile tools to modulate pre-mRNA splicing in a wide range of applications. Here, we outline the design of these U7 snRNA constructs to achieve efficient exon skipping of the dystrophin gene. We also describe methods to evaluate the efficiency of such U7 snRNA constructs in vitro in DMD patient cells and in vivo in the transgenic hDMD mouse model, using lentiviral and recombinant adeno-associated viral vectors, respectively.", 
    "editor": [
      {
        "familyName": "Duan", 
        "givenName": "Dongsheng", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-61737-982-6_11", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2761786", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": {
      "isbn": [
        "978-1-61737-981-9", 
        "978-1-61737-982-6"
      ], 
      "name": "Muscle Gene Therapy", 
      "type": "Book"
    }, 
    "name": "Engineering Exon-Skipping Vectors Expressing U7 snRNA Constructs for Duchenne Muscular Dystrophy Gene Therapy", 
    "pagination": "179-196", 
    "productId": [
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21194028"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029388896"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-61737-982-6_11"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8c0102ab921f692103a6d422072624deb1642c205c630256a5e23650513ba689"
        ]
      }
    ], 
    "publisher": {
      "location": "Totowa, NJ", 
      "name": "Humana Press", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-61737-982-6_11", 
      "https://app.dimensions.ai/details/publication/pub.1029388896"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72847_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-1-61737-982-6_11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-61737-982-6_11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-61737-982-6_11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-61737-982-6_11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-61737-982-6_11'


 

This table displays all metadata directly associated to this object as RDF triples.

226 TRIPLES      23 PREDICATES      70 URIs      38 LITERALS      27 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-61737-982-6_11 schema:about N07b1f43bfc7c445a8b8fd6ef3654af4c
2 N10e74872129544e48e9f18e4d5759f07
3 N5af8266d91534791b6c73c707749323b
4 N5d1cfa077a574bf3840cb34095dd693d
5 N72d1c5fdc65d4d54a68362ab73570147
6 N76ed4cdcfc4441d8b9ba31463de0ddca
7 N7d9e9f42901a44adaa9d51382b88a76d
8 N855b8e1f52f844a38d9e5a9ccf4b7f59
9 N9aae5a3095ea4fb7a28a6ea2b5eac4b6
10 N9ee4919eaa23428eaf6da67aee6e15c7
11 Nabaab4b939c94f4b957745714aa20b4e
12 Nb320ff9bf546473d8dd0bcc595684e45
13 Nc0c54abcf53f48ffa66a4e607b80160a
14 Nc149a2826c754c6888953bc726e88934
15 Nc47f01fa3ff44fa09cb6c963eebd3156
16 Ned496d9f2b474ad1bbe0cabfc7e6d330
17 Nf201e771d1e344bbbedbec574d9624f4
18 Nfc462a9c2093404392e3bd443117d91a
19 anzsrc-for:10
20 anzsrc-for:1004
21 schema:author Ncfbffc83ddd34c7a81caabdfd05826ee
22 schema:citation sg:pub.10.1007/s00018-004-4190-0
23 sg:pub.10.1007/s000180300047
24 sg:pub.10.1038/nsb887
25 https://app.dimensions.ai/details/publication/pub.1078924717
26 https://app.dimensions.ai/details/publication/pub.1082383114
27 https://doi.org/10.1002/j.1460-2075.1994.tb06369.x
28 https://doi.org/10.1002/jgm.295
29 https://doi.org/10.1016/0888-7543(88)90113-9
30 https://doi.org/10.1016/j.ymthe.2004.05.031
31 https://doi.org/10.1016/s0960-8966(02)00086-x
32 https://doi.org/10.1038/mt.2008.287
33 https://doi.org/10.1038/mt.2009.113
34 https://doi.org/10.1038/sj.mt.6300095
35 https://doi.org/10.1073/pnas.142302299
36 https://doi.org/10.1073/pnas.98.1.42
37 https://doi.org/10.1074/jbc.m709410200
38 https://doi.org/10.1089/oli.2005.15.284
39 https://doi.org/10.1093/hmg/10.15.1547
40 https://doi.org/10.1093/hmg/7.7.1083
41 https://doi.org/10.1093/hmg/8.13.2415
42 https://doi.org/10.1093/hmg/ddg100
43 https://doi.org/10.1101/gad.1195304
44 https://doi.org/10.1126/science.1073774
45 https://doi.org/10.1126/science.1104297
46 https://doi.org/10.1196/annals.1348.058
47 schema:datePublished 2010-12-08
48 schema:datePublishedReg 2010-12-08
49 schema:description Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disorder caused by mutations in the dystrophin gene. In most cases, the open-reading frame is disrupted which results in the absence of a functional protein. Antisense-mediated exon skipping is one of the most promising approaches for the treatment of DMD and has recently been shown to correct the reading frame and restore dystrophin expression in vitro and in vivo. Specific exon skipping can be achieved using synthetic oligonucleotides or viral -vectors encoding modified snRNAs, by masking important splicing sites. We have recently demonstrated that enhanced exon skipping can be induced by a U7 snRNA carrying binding sites for the heterogeneous ribonucleoprotein A1. In DMD patient cells, bifunctional U7 snRNAs harboring silencer motifs induce complete skipping of exon 51 and thus restore dystrophin expression to near wild-type levels. Furthermore, we have confirmed the efficacy of these constructs in vivo in transgenic mice carrying the entire human DMD locus after intramuscular injection of AAV vectors encoding the bifunctional U7 snRNA. These new constructs are very promising for the optimization of therapeutic exon skipping for DMD, but also offer powerful and versatile tools to modulate pre-mRNA splicing in a wide range of applications. Here, we outline the design of these U7 snRNA constructs to achieve efficient exon skipping of the dystrophin gene. We also describe methods to evaluate the efficiency of such U7 snRNA constructs in vitro in DMD patient cells and in vivo in the transgenic hDMD mouse model, using lentiviral and recombinant adeno-associated viral vectors, respectively.
50 schema:editor Nee712b72c1bb423ea85b4be1e5be8a28
51 schema:genre chapter
52 schema:inLanguage en
53 schema:isAccessibleForFree false
54 schema:isPartOf N9a1b9b95af0e484eb8590d59311fe8e5
55 schema:name Engineering Exon-Skipping Vectors Expressing U7 snRNA Constructs for Duchenne Muscular Dystrophy Gene Therapy
56 schema:pagination 179-196
57 schema:productId N1437dde148c94ae897bc69ec6e1630ba
58 N7818244c809a413eae6a2befd973ab4e
59 N7e55a691305c45db9859fdce2414b139
60 Nc9c28e25d09d4a1db0beadf7e0347d5e
61 schema:publisher N6f8c3d966bf04159a5a988482b0c2fe3
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029388896
63 https://doi.org/10.1007/978-1-61737-982-6_11
64 schema:sdDatePublished 2019-04-16T08:31
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher Nd1dd635c2cb94ba194afada32f24dbed
67 schema:url https://link.springer.com/10.1007%2F978-1-61737-982-6_11
68 sgo:license sg:explorer/license/
69 sgo:sdDataset chapters
70 rdf:type schema:Chapter
71 N07b1f43bfc7c445a8b8fd6ef3654af4c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Humans
73 rdf:type schema:DefinedTerm
74 N10e74872129544e48e9f18e4d5759f07 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Genetic Engineering
76 rdf:type schema:DefinedTerm
77 N1437dde148c94ae897bc69ec6e1630ba schema:name pubmed_id
78 schema:value 21194028
79 rdf:type schema:PropertyValue
80 N2bf0c7d7b6c84eebbb6f987a64f47e53 rdf:first sg:person.015506710312.55
81 rdf:rest rdf:nil
82 N5af8266d91534791b6c73c707749323b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name RNA, Small Nuclear
84 rdf:type schema:DefinedTerm
85 N5d1cfa077a574bf3840cb34095dd693d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Animals
87 rdf:type schema:DefinedTerm
88 N6f8c3d966bf04159a5a988482b0c2fe3 schema:location Totowa, NJ
89 schema:name Humana Press
90 rdf:type schema:Organisation
91 N72d1c5fdc65d4d54a68362ab73570147 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Alternative Splicing
93 rdf:type schema:DefinedTerm
94 N76ed4cdcfc4441d8b9ba31463de0ddca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Muscular Dystrophy, Duchenne
96 rdf:type schema:DefinedTerm
97 N7818244c809a413eae6a2befd973ab4e schema:name doi
98 schema:value 10.1007/978-1-61737-982-6_11
99 rdf:type schema:PropertyValue
100 N7d9e9f42901a44adaa9d51382b88a76d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Heterogeneous Nuclear Ribonucleoprotein A1
102 rdf:type schema:DefinedTerm
103 N7e55a691305c45db9859fdce2414b139 schema:name readcube_id
104 schema:value 8c0102ab921f692103a6d422072624deb1642c205c630256a5e23650513ba689
105 rdf:type schema:PropertyValue
106 N855b8e1f52f844a38d9e5a9ccf4b7f59 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Dependovirus
108 rdf:type schema:DefinedTerm
109 N9a1b9b95af0e484eb8590d59311fe8e5 schema:isbn 978-1-61737-981-9
110 978-1-61737-982-6
111 schema:name Muscle Gene Therapy
112 rdf:type schema:Book
113 N9aae5a3095ea4fb7a28a6ea2b5eac4b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Reading Frames
115 rdf:type schema:DefinedTerm
116 N9ee4919eaa23428eaf6da67aee6e15c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Dystrophin
118 rdf:type schema:DefinedTerm
119 Nabaab4b939c94f4b957745714aa20b4e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Mice
121 rdf:type schema:DefinedTerm
122 Nb320ff9bf546473d8dd0bcc595684e45 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Heterogeneous-Nuclear Ribonucleoprotein Group A-B
124 rdf:type schema:DefinedTerm
125 Nc0c54abcf53f48ffa66a4e607b80160a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Gene Transfer Techniques
127 rdf:type schema:DefinedTerm
128 Nc149a2826c754c6888953bc726e88934 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name DNA, Antisense
130 rdf:type schema:DefinedTerm
131 Nc47f01fa3ff44fa09cb6c963eebd3156 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Mice, Transgenic
133 rdf:type schema:DefinedTerm
134 Nc9c28e25d09d4a1db0beadf7e0347d5e schema:name dimensions_id
135 schema:value pub.1029388896
136 rdf:type schema:PropertyValue
137 Ncfbffc83ddd34c7a81caabdfd05826ee rdf:first sg:person.01200571036.55
138 rdf:rest N2bf0c7d7b6c84eebbb6f987a64f47e53
139 Nd1dd635c2cb94ba194afada32f24dbed schema:name Springer Nature - SN SciGraph project
140 rdf:type schema:Organization
141 Ndd49ad5f694a41459a5b7917f648bc75 schema:familyName Duan
142 schema:givenName Dongsheng
143 rdf:type schema:Person
144 Ned496d9f2b474ad1bbe0cabfc7e6d330 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Genetic Therapy
146 rdf:type schema:DefinedTerm
147 Nee712b72c1bb423ea85b4be1e5be8a28 rdf:first Ndd49ad5f694a41459a5b7917f648bc75
148 rdf:rest rdf:nil
149 Nf201e771d1e344bbbedbec574d9624f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Gene Expression
151 rdf:type schema:DefinedTerm
152 Nfc462a9c2093404392e3bd443117d91a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Genetic Vectors
154 rdf:type schema:DefinedTerm
155 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
156 schema:name Technology
157 rdf:type schema:DefinedTerm
158 anzsrc-for:1004 schema:inDefinedTermSet anzsrc-for:
159 schema:name Medical Biotechnology
160 rdf:type schema:DefinedTerm
161 sg:grant.2761786 http://pending.schema.org/fundedItem sg:pub.10.1007/978-1-61737-982-6_11
162 rdf:type schema:MonetaryGrant
163 sg:person.01200571036.55 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
164 schema:familyName Goyenvalle
165 schema:givenName Aurélie
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200571036.55
167 rdf:type schema:Person
168 sg:person.015506710312.55 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
169 schema:familyName Davies
170 schema:givenName Kay E.
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015506710312.55
172 rdf:type schema:Person
173 sg:pub.10.1007/s00018-004-4190-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035918405
174 https://doi.org/10.1007/s00018-004-4190-0
175 rdf:type schema:CreativeWork
176 sg:pub.10.1007/s000180300047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041592384
177 https://doi.org/10.1007/s000180300047
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/nsb887 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026008206
180 https://doi.org/10.1038/nsb887
181 rdf:type schema:CreativeWork
182 https://app.dimensions.ai/details/publication/pub.1078924717 schema:CreativeWork
183 https://app.dimensions.ai/details/publication/pub.1082383114 schema:CreativeWork
184 https://doi.org/10.1002/j.1460-2075.1994.tb06369.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1082392304
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1002/jgm.295 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004977651
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/0888-7543(88)90113-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040394007
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.ymthe.2004.05.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045117278
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/s0960-8966(02)00086-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034308763
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1038/mt.2008.287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039140072
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1038/mt.2009.113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004419215
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1038/sj.mt.6300095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040074992
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1073/pnas.142302299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043893238
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1073/pnas.98.1.42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022610150
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1074/jbc.m709410200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016206375
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1089/oli.2005.15.284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059303275
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1093/hmg/10.15.1547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053317642
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1093/hmg/7.7.1083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004919532
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1093/hmg/8.13.2415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004341920
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1093/hmg/ddg100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036654385
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1101/gad.1195304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024831634
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1126/science.1073774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049709064
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1126/science.1104297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062451121
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1196/annals.1348.058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021776621
223 rdf:type schema:CreativeWork
224 https://www.grid.ac/institutes/grid.4991.5 schema:alternateName University of Oxford
225 schema:name MRC Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, South Parks Road, Oxford, UK
226 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...