FRET-Based Biosensors for the Detection and Quantification of AI-2 Class of Quorum Sensing Compounds View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2010-10-08

AUTHORS

Sathish Rajamani , Richard Sayre

ABSTRACT

Intercellular small molecular weight signaling molecules modulate a variety of biological functions in bacteria. One of the more complex behaviors mediated by intercellular signaling molecules is the suite of activities regulated by quorum sensing molecules. These molecules mediate a variety of population-dependent responses, including the expression of genes that regulate bioluminescence, type III secretion, siderophore production, colony morphology, biofilm formation, and metalloprotease production. Given their central role in regulating these responses, the detection and quantification of QS molecules has important practical implications. Until recently, the detection of QS molecules from Gram-negative bacteria has relied primarily on bacterial reporter systems. These bioassays though immensely useful are subject to interference by compounds that affect bacterial growth and metabolism. In addition, the reporter response is highly dependent on culture age and cell population density. To overcome such limitations, we developed an in vitro protein-based assay system for the rapid detection and quantification of the furanosyl borate diester (BAI-2) subclass of autoinducer-2 (AI-2) QS molecules. The biosensor is based on the interaction of BAI-2 with the Vibrio harveyi QS receptor LuxP. Conformation changes associated with BAI-2 binding to the LuxP receptor change the orientation of cyan and yellow variants of GFP (CFP and YFP) fused the N- and C-termini, respectively, of the LuxP receptor. LuxP-BAI2 binding induces changes in fluorescence resonance energy transfer (FRET) between CFP and YFP, whose magnitude of change is ligand concentration dependent. A set of ligand-insensitive LuxP-mutant FRET protein sensor was also developed for use as control biosensors. The FRET-based BAI-2 biosensor responds selectively to both synthetic and biologically derived BAI-2compounds. This report describes the use of the LuxP-FRET biosensor for the detection and quantification of BAI-2. More... »

PAGES

31-46

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-60761-971-0_3

DOI

http://dx.doi.org/10.1007/978-1-60761-971-0_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029138182

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21031302


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacterial Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biosensing Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Borates", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Culture Media", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electrophoresis, Polyacrylamide Gel", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluorescence Resonance Energy Transfer", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Furans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Homoserine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lactones", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Conformation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quorum Sensing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Vibrio", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Michigan\u2013Ann Arbor", 
          "id": "https://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH, USA", 
            "Life Sciences Institute, Ann Arbor, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rajamani", 
        "givenName": "Sathish", 
        "id": "sg:person.01202433763.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202433763.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Donald Danforth Plant Science Center", 
          "id": "https://www.grid.ac/institutes/grid.34424.35", 
          "name": [
            "Donald Danforth Plant Science Center, St. Louis, MO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sayre", 
        "givenName": "Richard", 
        "id": "sg:person.0610314665.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610314665.35"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1128/jb.186.12.3794-3805.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001066351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2958.1993.tb01737.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002572936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt0102-87", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007758048", 
          "https://doi.org/10.1038/nbt0102-87"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt0102-87", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007758048", 
          "https://doi.org/10.1038/nbt0102-87"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1110/ps.021860", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009360096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.74.5.1932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013584980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2958.1994.tb00422.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013743597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.142089199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015532992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m301333200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016169961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1996.0645", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016505346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2958.2000.01913.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036860569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mimet.2006.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042053343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1208/ps010202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043777867", 
          "https://doi.org/10.1208/ps010202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/emboj/cdg085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051969131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00592a012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055181962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi602479e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055206834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi602479e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055206834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ol047695j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056244982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ol047695j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056244982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/mic.0.c0117-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060397910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jn/129.12.2236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074554569"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-10-08", 
    "datePublishedReg": "2010-10-08", 
    "description": "Intercellular small molecular weight signaling molecules modulate a variety of biological functions in bacteria. One of the more complex behaviors mediated by intercellular signaling molecules is the suite of activities regulated by quorum sensing molecules. These molecules mediate a variety of population-dependent responses, including the expression of genes that regulate bioluminescence, type III secretion, siderophore production, colony morphology, biofilm formation, and metalloprotease production. Given their central role in regulating these responses, the detection and quantification of QS molecules has important practical implications. Until recently, the detection of QS molecules from Gram-negative bacteria has relied primarily on bacterial reporter systems. These bioassays though immensely useful are subject to interference by compounds that affect bacterial growth and metabolism. In addition, the reporter response is highly dependent on culture age and cell population density. To overcome such limitations, we developed an in vitro protein-based assay system for the rapid detection and quantification of the furanosyl borate diester (BAI-2) subclass of autoinducer-2 (AI-2) QS molecules. The biosensor is based on the interaction of BAI-2 with the Vibrio harveyi QS receptor LuxP. Conformation changes associated with BAI-2 binding to the LuxP receptor change the orientation of cyan and yellow variants of GFP (CFP and YFP) fused the N- and C-termini, respectively, of the LuxP receptor. LuxP-BAI2 binding induces changes in fluorescence resonance energy transfer (FRET) between CFP and YFP, whose magnitude of change is ligand concentration dependent. A set of ligand-insensitive LuxP-mutant FRET protein sensor was also developed for use as control biosensors. The FRET-based BAI-2 biosensor responds selectively to both synthetic and biologically derived BAI-2compounds. This report describes the use of the LuxP-FRET biosensor for the detection and quantification of BAI-2.", 
    "editor": [
      {
        "familyName": "Rumbaugh", 
        "givenName": "Kendra P.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-60761-971-0_3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-60761-970-3", 
        "978-1-60761-971-0"
      ], 
      "name": "Quorum Sensing", 
      "type": "Book"
    }, 
    "name": "FRET-Based Biosensors for the Detection and Quantification of AI-2 Class of Quorum Sensing Compounds", 
    "pagination": "31-46", 
    "productId": [
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21031302"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029138182"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-60761-971-0_3"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8acf4ce9f1835c40da5886e069b8f1fc9f03b5e6224c655b9fc869a897c3d35f"
        ]
      }
    ], 
    "publisher": {
      "location": "Totowa, NJ", 
      "name": "Humana Press", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-60761-971-0_3", 
      "https://app.dimensions.ai/details/publication/pub.1029138182"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70061_00000001.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-1-60761-971-0_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-60761-971-0_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-60761-971-0_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-60761-971-0_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-60761-971-0_3'


 

This table displays all metadata directly associated to this object as RDF triples.

188 TRIPLES      23 PREDICATES      58 URIs      33 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-60761-971-0_3 schema:about N61cc0e17e5714d9fad118f06b8765919
2 N65178af15d304c13abe7e042fce57b13
3 N74a652aed970461d9e6bd6ecddb9ee8d
4 N7cdd67b5c2624c01a2d0138563fc6910
5 N81ecd01a4b294835ac99491d59fcc1af
6 N8a46cb8292c141b7a7fbc7a96682f550
7 Na54b566a9ffb4804a20c139c2dd4c502
8 Naac42003698047879924780acb7cb83a
9 Nbadba0d5979e4b02861b6e10704699dd
10 Nbb210a97719949018dcd526380b4d3d7
11 Nc0af3a6f6891428c84d1df80f917cd2a
12 Nec23a22647004b6eb1fd9780469d16b9
13 Nf596cfd2ac6e4527b5002f0e964f122f
14 anzsrc-for:06
15 anzsrc-for:0601
16 schema:author Nbc6c1a809d104a93b05857d70c1517eb
17 schema:citation sg:pub.10.1038/nbt0102-87
18 sg:pub.10.1208/ps010202
19 https://doi.org/10.1006/jmbi.1996.0645
20 https://doi.org/10.1016/j.mimet.2006.02.001
21 https://doi.org/10.1021/bi00592a012
22 https://doi.org/10.1021/bi602479e
23 https://doi.org/10.1021/ol047695j
24 https://doi.org/10.1046/j.1365-2958.2000.01913.x
25 https://doi.org/10.1073/pnas.142089199
26 https://doi.org/10.1073/pnas.74.5.1932
27 https://doi.org/10.1074/jbc.m301333200
28 https://doi.org/10.1093/emboj/cdg085
29 https://doi.org/10.1093/jn/129.12.2236
30 https://doi.org/10.1099/mic.0.c0117-0
31 https://doi.org/10.1110/ps.021860
32 https://doi.org/10.1111/j.1365-2958.1993.tb01737.x
33 https://doi.org/10.1111/j.1365-2958.1994.tb00422.x
34 https://doi.org/10.1128/jb.186.12.3794-3805.2004
35 schema:datePublished 2010-10-08
36 schema:datePublishedReg 2010-10-08
37 schema:description Intercellular small molecular weight signaling molecules modulate a variety of biological functions in bacteria. One of the more complex behaviors mediated by intercellular signaling molecules is the suite of activities regulated by quorum sensing molecules. These molecules mediate a variety of population-dependent responses, including the expression of genes that regulate bioluminescence, type III secretion, siderophore production, colony morphology, biofilm formation, and metalloprotease production. Given their central role in regulating these responses, the detection and quantification of QS molecules has important practical implications. Until recently, the detection of QS molecules from Gram-negative bacteria has relied primarily on bacterial reporter systems. These bioassays though immensely useful are subject to interference by compounds that affect bacterial growth and metabolism. In addition, the reporter response is highly dependent on culture age and cell population density. To overcome such limitations, we developed an in vitro protein-based assay system for the rapid detection and quantification of the furanosyl borate diester (BAI-2) subclass of autoinducer-2 (AI-2) QS molecules. The biosensor is based on the interaction of BAI-2 with the Vibrio harveyi QS receptor LuxP. Conformation changes associated with BAI-2 binding to the LuxP receptor change the orientation of cyan and yellow variants of GFP (CFP and YFP) fused the N- and C-termini, respectively, of the LuxP receptor. LuxP-BAI2 binding induces changes in fluorescence resonance energy transfer (FRET) between CFP and YFP, whose magnitude of change is ligand concentration dependent. A set of ligand-insensitive LuxP-mutant FRET protein sensor was also developed for use as control biosensors. The FRET-based BAI-2 biosensor responds selectively to both synthetic and biologically derived BAI-2compounds. This report describes the use of the LuxP-FRET biosensor for the detection and quantification of BAI-2.
38 schema:editor N5329e7d9bac3490fbb4cb9664aea7dae
39 schema:genre chapter
40 schema:inLanguage en
41 schema:isAccessibleForFree false
42 schema:isPartOf N2a8aec00e31c4366be9f438371ed70b0
43 schema:name FRET-Based Biosensors for the Detection and Quantification of AI-2 Class of Quorum Sensing Compounds
44 schema:pagination 31-46
45 schema:productId N710d4bbdf44346089c7b373d98522f7c
46 N7d88d6afe4c744e483bdedcaf396ed63
47 N82604cdcf567418994e890a3ad9d55ac
48 Nba69eb5132d9403fab282e6ceb89ddc9
49 schema:publisher N802dda700fbd4f9fb9a802c514ed637b
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029138182
51 https://doi.org/10.1007/978-1-60761-971-0_3
52 schema:sdDatePublished 2019-04-16T08:27
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N29573acb6fb8467d83eab913d4059acc
55 schema:url https://link.springer.com/10.1007%2F978-1-60761-971-0_3
56 sgo:license sg:explorer/license/
57 sgo:sdDataset chapters
58 rdf:type schema:Chapter
59 N29573acb6fb8467d83eab913d4059acc schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N2a8aec00e31c4366be9f438371ed70b0 schema:isbn 978-1-60761-970-3
62 978-1-60761-971-0
63 schema:name Quorum Sensing
64 rdf:type schema:Book
65 N312527e3db8840ca8d33d691635362c0 schema:familyName Rumbaugh
66 schema:givenName Kendra P.
67 rdf:type schema:Person
68 N5329e7d9bac3490fbb4cb9664aea7dae rdf:first N312527e3db8840ca8d33d691635362c0
69 rdf:rest rdf:nil
70 N5877a859189e461795014321314f972a rdf:first sg:person.0610314665.35
71 rdf:rest rdf:nil
72 N61cc0e17e5714d9fad118f06b8765919 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Models, Molecular
74 rdf:type schema:DefinedTerm
75 N65178af15d304c13abe7e042fce57b13 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Electrophoresis, Polyacrylamide Gel
77 rdf:type schema:DefinedTerm
78 N710d4bbdf44346089c7b373d98522f7c schema:name dimensions_id
79 schema:value pub.1029138182
80 rdf:type schema:PropertyValue
81 N74a652aed970461d9e6bd6ecddb9ee8d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Fluorescence Resonance Energy Transfer
83 rdf:type schema:DefinedTerm
84 N7cdd67b5c2624c01a2d0138563fc6910 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Furans
86 rdf:type schema:DefinedTerm
87 N7d88d6afe4c744e483bdedcaf396ed63 schema:name readcube_id
88 schema:value 8acf4ce9f1835c40da5886e069b8f1fc9f03b5e6224c655b9fc869a897c3d35f
89 rdf:type schema:PropertyValue
90 N802dda700fbd4f9fb9a802c514ed637b schema:location Totowa, NJ
91 schema:name Humana Press
92 rdf:type schema:Organisation
93 N81ecd01a4b294835ac99491d59fcc1af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Bacterial Proteins
95 rdf:type schema:DefinedTerm
96 N82604cdcf567418994e890a3ad9d55ac schema:name doi
97 schema:value 10.1007/978-1-60761-971-0_3
98 rdf:type schema:PropertyValue
99 N8a46cb8292c141b7a7fbc7a96682f550 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Quorum Sensing
101 rdf:type schema:DefinedTerm
102 Na54b566a9ffb4804a20c139c2dd4c502 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Borates
104 rdf:type schema:DefinedTerm
105 Naac42003698047879924780acb7cb83a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Protein Conformation
107 rdf:type schema:DefinedTerm
108 Nba69eb5132d9403fab282e6ceb89ddc9 schema:name pubmed_id
109 schema:value 21031302
110 rdf:type schema:PropertyValue
111 Nbadba0d5979e4b02861b6e10704699dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Biosensing Techniques
113 rdf:type schema:DefinedTerm
114 Nbb210a97719949018dcd526380b4d3d7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Vibrio
116 rdf:type schema:DefinedTerm
117 Nbc6c1a809d104a93b05857d70c1517eb rdf:first sg:person.01202433763.94
118 rdf:rest N5877a859189e461795014321314f972a
119 Nc0af3a6f6891428c84d1df80f917cd2a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Culture Media
121 rdf:type schema:DefinedTerm
122 Nec23a22647004b6eb1fd9780469d16b9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Homoserine
124 rdf:type schema:DefinedTerm
125 Nf596cfd2ac6e4527b5002f0e964f122f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Lactones
127 rdf:type schema:DefinedTerm
128 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
129 schema:name Biological Sciences
130 rdf:type schema:DefinedTerm
131 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
132 schema:name Biochemistry and Cell Biology
133 rdf:type schema:DefinedTerm
134 sg:person.01202433763.94 schema:affiliation https://www.grid.ac/institutes/grid.214458.e
135 schema:familyName Rajamani
136 schema:givenName Sathish
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202433763.94
138 rdf:type schema:Person
139 sg:person.0610314665.35 schema:affiliation https://www.grid.ac/institutes/grid.34424.35
140 schema:familyName Sayre
141 schema:givenName Richard
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610314665.35
143 rdf:type schema:Person
144 sg:pub.10.1038/nbt0102-87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007758048
145 https://doi.org/10.1038/nbt0102-87
146 rdf:type schema:CreativeWork
147 sg:pub.10.1208/ps010202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043777867
148 https://doi.org/10.1208/ps010202
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1006/jmbi.1996.0645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016505346
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.mimet.2006.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042053343
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1021/bi00592a012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055181962
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1021/bi602479e schema:sameAs https://app.dimensions.ai/details/publication/pub.1055206834
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1021/ol047695j schema:sameAs https://app.dimensions.ai/details/publication/pub.1056244982
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1046/j.1365-2958.2000.01913.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036860569
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1073/pnas.142089199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015532992
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1073/pnas.74.5.1932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013584980
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1074/jbc.m301333200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016169961
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1093/emboj/cdg085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051969131
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1093/jn/129.12.2236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074554569
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1099/mic.0.c0117-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060397910
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1110/ps.021860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009360096
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1111/j.1365-2958.1993.tb01737.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1002572936
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1111/j.1365-2958.1994.tb00422.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013743597
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1128/jb.186.12.3794-3805.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001066351
181 rdf:type schema:CreativeWork
182 https://www.grid.ac/institutes/grid.214458.e schema:alternateName University of Michigan–Ann Arbor
183 schema:name Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH, USA
184 Life Sciences Institute, Ann Arbor, MI, USA
185 rdf:type schema:Organization
186 https://www.grid.ac/institutes/grid.34424.35 schema:alternateName Donald Danforth Plant Science Center
187 schema:name Donald Danforth Plant Science Center, St. Louis, MO, USA
188 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...