Protein Structure Modeling View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2010-08-17

AUTHORS

Lars Malmström , David R. Goodlett

ABSTRACT

The tertiary structure of proteins can reveal information that is hard to detect in a linear sequence. Knowing the tertiary structure is valuable when generating hypothesis and interpreting data. Unfortunately, the gap between the number of known protein sequences and their associated structures is widening. One way to bridge this gap is to use computer-generated structure models of proteins. Here we present concepts and online resources that can be used to identify structural domains in proteins and to create structure models of those domains. More... »

PAGES

63-72

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-60761-842-3_5

DOI

http://dx.doi.org/10.1007/978-1-60761-842-3_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013374863

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20835793


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Protein", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Structure, Tertiary", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Structural Homology, Protein", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Molecular Systems Biology, ETH Zurich, Zurich, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "Institute for Molecular Systems Biology, ETH Zurich, Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Malmstr\u00f6m", 
        "givenName": "Lars", 
        "id": "sg:person.0744623443.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744623443.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA", 
          "id": "http://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goodlett", 
        "givenName": "David R.", 
        "id": "sg:person.01044126157.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044126157.13"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2010-08-17", 
    "datePublishedReg": "2010-08-17", 
    "description": "The tertiary structure of proteins can reveal information that is hard to detect in a linear sequence. Knowing the tertiary structure is valuable when generating hypothesis and interpreting data. Unfortunately, the gap between the number of known protein sequences and their associated structures is widening. One way to bridge this gap is to use computer-generated structure models of proteins. Here we present concepts and online resources that can be used to identify structural domains in proteins and to create structure models of those domains.", 
    "editor": [
      {
        "familyName": "Feny\u00f6", 
        "givenName": "David", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-60761-842-3_5", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-60761-841-6", 
        "978-1-60761-842-3"
      ], 
      "name": "Computational Biology", 
      "type": "Book"
    }, 
    "keywords": [
      "tertiary structure", 
      "protein structure modeling", 
      "protein sequences", 
      "structural domains", 
      "protein", 
      "structure modeling", 
      "linear sequence", 
      "sequence", 
      "domain", 
      "structure model", 
      "structure", 
      "online resources", 
      "hypothesis", 
      "number", 
      "resources", 
      "data", 
      "information", 
      "model", 
      "gap", 
      "way", 
      "modeling", 
      "concept"
    ], 
    "name": "Protein Structure Modeling", 
    "pagination": "63-72", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013374863"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-60761-842-3_5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20835793"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-60761-842-3_5", 
      "https://app.dimensions.ai/details/publication/pub.1013374863"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-09-02T16:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/chapter/chapter_152.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-60761-842-3_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-60761-842-3_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-60761-842-3_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-60761-842-3_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-60761-842-3_5'


 

This table displays all metadata directly associated to this object as RDF triples.

127 TRIPLES      22 PREDICATES      55 URIs      48 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-60761-842-3_5 schema:about N1e782c21b039468c98253bcd0d3ac364
2 N415384bb8fcd4d0b8df7dd79d2721580
3 N4790c2b9ee69495bb20cb1f4e19224b8
4 N6781a44e6c4a43e79af69963b8125e9d
5 N70b707caebe34e9c95dad98e038bde16
6 N82eb3844e1f4479395bf1869206c4d15
7 Nb2be0250dbd84940bceead0c3a7affe7
8 Nda3da40d59fc4bb98b6574fc9fdf1651
9 anzsrc-for:06
10 anzsrc-for:0601
11 schema:author N4dfa977105224a2babe74ff6c0c89801
12 schema:datePublished 2010-08-17
13 schema:datePublishedReg 2010-08-17
14 schema:description The tertiary structure of proteins can reveal information that is hard to detect in a linear sequence. Knowing the tertiary structure is valuable when generating hypothesis and interpreting data. Unfortunately, the gap between the number of known protein sequences and their associated structures is widening. One way to bridge this gap is to use computer-generated structure models of proteins. Here we present concepts and online resources that can be used to identify structural domains in proteins and to create structure models of those domains.
15 schema:editor N9834e88f50a6415daf401ec168b2b6ec
16 schema:genre chapter
17 schema:isAccessibleForFree false
18 schema:isPartOf N1de0c00403e34e7ba4aea8b16e4d122b
19 schema:keywords concept
20 data
21 domain
22 gap
23 hypothesis
24 information
25 linear sequence
26 model
27 modeling
28 number
29 online resources
30 protein
31 protein sequences
32 protein structure modeling
33 resources
34 sequence
35 structural domains
36 structure
37 structure model
38 structure modeling
39 tertiary structure
40 way
41 schema:name Protein Structure Modeling
42 schema:pagination 63-72
43 schema:productId N2aa89d7f3d084ea88a55f23fda8ce7fc
44 N2b4eade5c02045078e9bef43c8c9dff8
45 Nd8712f0492a945548ef15cc096e8bb7d
46 schema:publisher N0094277a644540b597f1548b0fd81cb5
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013374863
48 https://doi.org/10.1007/978-1-60761-842-3_5
49 schema:sdDatePublished 2022-09-02T16:10
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N3084191d4e1146e4b6c0a48e665543a5
52 schema:url https://doi.org/10.1007/978-1-60761-842-3_5
53 sgo:license sg:explorer/license/
54 sgo:sdDataset chapters
55 rdf:type schema:Chapter
56 N0094277a644540b597f1548b0fd81cb5 schema:name Springer Nature
57 rdf:type schema:Organisation
58 N07733ee9a522411fb39ac6c9e4bdf840 schema:familyName Fenyö
59 schema:givenName David
60 rdf:type schema:Person
61 N1de0c00403e34e7ba4aea8b16e4d122b schema:isbn 978-1-60761-841-6
62 978-1-60761-842-3
63 schema:name Computational Biology
64 rdf:type schema:Book
65 N1e782c21b039468c98253bcd0d3ac364 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Computational Biology
67 rdf:type schema:DefinedTerm
68 N2aa89d7f3d084ea88a55f23fda8ce7fc schema:name pubmed_id
69 schema:value 20835793
70 rdf:type schema:PropertyValue
71 N2b4eade5c02045078e9bef43c8c9dff8 schema:name doi
72 schema:value 10.1007/978-1-60761-842-3_5
73 rdf:type schema:PropertyValue
74 N3084191d4e1146e4b6c0a48e665543a5 schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 N415384bb8fcd4d0b8df7dd79d2721580 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Models, Molecular
78 rdf:type schema:DefinedTerm
79 N4790c2b9ee69495bb20cb1f4e19224b8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Structural Homology, Protein
81 rdf:type schema:DefinedTerm
82 N4dfa977105224a2babe74ff6c0c89801 rdf:first sg:person.0744623443.61
83 rdf:rest Nab7a847d429d4abcbd05de98db9f8687
84 N6781a44e6c4a43e79af69963b8125e9d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Databases, Protein
86 rdf:type schema:DefinedTerm
87 N70b707caebe34e9c95dad98e038bde16 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Protein Structure, Tertiary
89 rdf:type schema:DefinedTerm
90 N82eb3844e1f4479395bf1869206c4d15 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Proteins
92 rdf:type schema:DefinedTerm
93 N9834e88f50a6415daf401ec168b2b6ec rdf:first N07733ee9a522411fb39ac6c9e4bdf840
94 rdf:rest rdf:nil
95 Nab7a847d429d4abcbd05de98db9f8687 rdf:first sg:person.01044126157.13
96 rdf:rest rdf:nil
97 Nb2be0250dbd84940bceead0c3a7affe7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Humans
99 rdf:type schema:DefinedTerm
100 Nd8712f0492a945548ef15cc096e8bb7d schema:name dimensions_id
101 schema:value pub.1013374863
102 rdf:type schema:PropertyValue
103 Nda3da40d59fc4bb98b6574fc9fdf1651 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Amino Acid Sequence
105 rdf:type schema:DefinedTerm
106 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
107 schema:name Biological Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
110 schema:name Biochemistry and Cell Biology
111 rdf:type schema:DefinedTerm
112 sg:person.01044126157.13 schema:affiliation grid-institutes:grid.34477.33
113 schema:familyName Goodlett
114 schema:givenName David R.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044126157.13
116 rdf:type schema:Person
117 sg:person.0744623443.61 schema:affiliation grid-institutes:grid.5801.c
118 schema:familyName Malmström
119 schema:givenName Lars
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744623443.61
121 rdf:type schema:Person
122 grid-institutes:grid.34477.33 schema:alternateName Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
123 schema:name Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
124 rdf:type schema:Organization
125 grid-institutes:grid.5801.c schema:alternateName Institute for Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
126 schema:name Institute for Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
127 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...