Statistical and Methodological Considerations in Exercise Genomics View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011-02-10

AUTHORS

Heather Gordish-Dressman , Joseph M. Devaney

ABSTRACT

The field of exercise genomics is growing at an amazing rate. New technologies such as genotyping chips used for genome-wide association studies (GWAS) have expanded the tools that can be used to uncover the effect genetic variants have on exercise performance and health and fitness-related phenotypes. The statistical methods for analyzing data from these new technologies are still being cultivated and assessed. This chapter will introduce statistical topics such as Hardy–Weinberg equilibrium, linkage disequilibrium, statistical power, sample-sized estimation, and genetic modeling. In addition, the statistical methods for analysis of single genetic variants for categorical and continuous variables are discussed. The chapter concludes by overviewing the statistical hurdles created by GWAS and how GWAS will impact the field of exercise science. This chapter is an extension of the fundamental concepts of exercise genomics presented in Chap. 1 and will continue to add to the breadth of knowledge that can be used by academicians, clinicians, health/fitness professionals, exercise scientists, and other researchers doing and/or considering undertaking work in the complex field of exercise genomics. More... »

PAGES

23-43

Book

TITLE

Exercise Genomics

ISBN

978-1-60761-354-1
978-1-60761-355-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-60761-355-8_2

DOI

http://dx.doi.org/10.1007/978-1-60761-355-8_2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008066038


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Children\u2019s National Health System", 
          "id": "https://www.grid.ac/institutes/grid.239560.b", 
          "name": [
            "Children\u2019s National Medical Center, Research Center for Genetic Medicine, 111 Michigan Avenue, N.W., 20010, Washington, DC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gordish-Dressman", 
        "givenName": "Heather", 
        "id": "sg:person.01250747034.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250747034.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Children\u2019s National Health System", 
          "id": "https://www.grid.ac/institutes/grid.239560.b", 
          "name": [
            "Children\u2019s National Medical Center, Research Center for Genetic Medicine, 111 Michigan Avenue, N.W., 20010, Washington, DC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Devaney", 
        "givenName": "Joseph M.", 
        "id": "sg:person.011202345405.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011202345405.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1126/science.1058040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001517867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.5996407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003666581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004749772", 
          "https://doi.org/10.1038/nrg1123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004749772", 
          "https://doi.org/10.1038/nrg1123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000126908", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005729075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/kwj046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005955313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0013164403251283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006150675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0013164403251283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006150675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006325160", 
          "https://doi.org/10.1038/ng.120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.299.11.1335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008034980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1469-1809.2005.00155.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009258310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1469-1809.2005.00155.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009258310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.76", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009408087", 
          "https://doi.org/10.1038/ng.76"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1069424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010139737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011092335", 
          "https://doi.org/10.1038/nrg1522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011092335", 
          "https://doi.org/10.1038/nrg1522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1113/jphysiol.1994.sp020426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013005692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.75", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013290784", 
          "https://doi.org/10.1038/ng.75"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013534924", 
          "https://doi.org/10.1038/nature03001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013534924", 
          "https://doi.org/10.1038/nature03001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa0706728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015188499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmp078120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015498373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1471-4892(03)00041-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015953580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1471-4892(03)00041-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015953580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ejhg.5201164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017348559", 
          "https://doi.org/10.1038/sj.ejhg.5201164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ejhg.5201164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017348559", 
          "https://doi.org/10.1038/sj.ejhg.5201164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2350-9-117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017359344", 
          "https://doi.org/10.1186/1471-2350-9-117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0006-341x.1999.00997.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021081768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022754728", 
          "https://doi.org/10.1038/nrg1521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022754728", 
          "https://doi.org/10.1038/nrg1521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022931325", 
          "https://doi.org/10.1038/nature05616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/321275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026846351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/447655a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027012183", 
          "https://doi.org/10.1038/447655a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-9525(01)02550-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028714464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1113/jphysiol.2002.021220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031151747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-10-614", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032417234", 
          "https://doi.org/10.1186/1471-2164-10-614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033654326", 
          "https://doi.org/10.1038/nature02168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033654326", 
          "https://doi.org/10.1038/nature02168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2165/00007256-200737090-00001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034117732", 
          "https://doi.org/10.2165/00007256-200737090-00001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/oby.2007.543", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035066200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2001-2-7-research0025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035888249", 
          "https://doi.org/10.1186/gb-2001-2-7-research0025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/geno.1995.9003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038103610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1471-4914(03)00138-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038544394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1471-4914(03)00138-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038544394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2009.02.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038565648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pmr.2005.08.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039739753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pmr.2005.08.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039739753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.20244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041952754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35057062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042854081", 
          "https://doi.org/10.1038/35057062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35057062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042854081", 
          "https://doi.org/10.1038/35057062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0709013104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043093522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/11.20.2463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043443883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0092-8674(01)00467-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044106976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1000477", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051911808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/302449", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058610023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1142358", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062456029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1142364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062456030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.97.2510.137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062663483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1210/jc.2009-2077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064291732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.2001.90.5.1936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074798148"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-02-10", 
    "datePublishedReg": "2011-02-10", 
    "description": "The field of exercise genomics is growing at an amazing rate. New technologies such as genotyping chips used for genome-wide association studies (GWAS) have expanded the tools that can be used to uncover the effect genetic variants have on exercise performance and health and fitness-related phenotypes. The statistical methods for analyzing data from these new technologies are still being cultivated and assessed. This chapter will introduce statistical topics such as Hardy\u2013Weinberg equilibrium, linkage disequilibrium, statistical power, sample-sized estimation, and genetic modeling. In addition, the statistical methods for analysis of single genetic variants for categorical and continuous variables are discussed. The chapter concludes by overviewing the statistical hurdles created by GWAS and how GWAS will impact the field of exercise science. This chapter is an extension of the fundamental concepts of exercise genomics presented in Chap. 1 and will continue to add to the breadth of knowledge that can be used by academicians, clinicians, health/fitness professionals, exercise scientists, and other researchers doing and/or considering undertaking work in the complex field of exercise genomics.", 
    "editor": [
      {
        "familyName": "Pescatello", 
        "givenName": "Linda S.", 
        "type": "Person"
      }, 
      {
        "familyName": "Roth", 
        "givenName": "Stephen M.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-60761-355-8_2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-60761-354-1", 
        "978-1-60761-355-8"
      ], 
      "name": "Exercise Genomics", 
      "type": "Book"
    }, 
    "name": "Statistical and Methodological Considerations in Exercise Genomics", 
    "pagination": "23-43", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008066038"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-60761-355-8_2"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "266d63c9c79a4c2bcf3c12640753059cd4e29983de21a6ac7d6c3140492d6481"
        ]
      }
    ], 
    "publisher": {
      "location": "Totowa, NJ", 
      "name": "Humana Press", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-60761-355-8_2", 
      "https://app.dimensions.ai/details/publication/pub.1008066038"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71714_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-1-60761-355-8_2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-60761-355-8_2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-60761-355-8_2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-60761-355-8_2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-60761-355-8_2'


 

This table displays all metadata directly associated to this object as RDF triples.

237 TRIPLES      23 PREDICATES      74 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-60761-355-8_2 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N2343cdaa84b94112a3a4b8399ae47886
4 schema:citation sg:pub.10.1038/35057062
5 sg:pub.10.1038/447655a
6 sg:pub.10.1038/nature02168
7 sg:pub.10.1038/nature03001
8 sg:pub.10.1038/nature05616
9 sg:pub.10.1038/ng.120
10 sg:pub.10.1038/ng.75
11 sg:pub.10.1038/ng.76
12 sg:pub.10.1038/nrg1123
13 sg:pub.10.1038/nrg1521
14 sg:pub.10.1038/nrg1522
15 sg:pub.10.1038/sj.ejhg.5201164
16 sg:pub.10.1186/1471-2164-10-614
17 sg:pub.10.1186/1471-2350-9-117
18 sg:pub.10.1186/gb-2001-2-7-research0025
19 sg:pub.10.2165/00007256-200737090-00001
20 https://doi.org/10.1001/jama.299.11.1335
21 https://doi.org/10.1002/gepi.20244
22 https://doi.org/10.1006/geno.1995.9003
23 https://doi.org/10.1016/j.ajhg.2009.02.004
24 https://doi.org/10.1016/j.pmr.2005.08.018
25 https://doi.org/10.1016/s0092-8674(01)00467-6
26 https://doi.org/10.1016/s0168-9525(01)02550-1
27 https://doi.org/10.1016/s1471-4892(03)00041-9
28 https://doi.org/10.1016/s1471-4914(03)00138-2
29 https://doi.org/10.1038/oby.2007.543
30 https://doi.org/10.1046/j.1469-1809.2005.00155.x
31 https://doi.org/10.1056/nejmoa0706728
32 https://doi.org/10.1056/nejmp078120
33 https://doi.org/10.1073/pnas.0709013104
34 https://doi.org/10.1086/302449
35 https://doi.org/10.1086/321275
36 https://doi.org/10.1093/aje/kwj046
37 https://doi.org/10.1093/hmg/11.20.2463
38 https://doi.org/10.1101/gr.5996407
39 https://doi.org/10.1111/j.0006-341x.1999.00997.x
40 https://doi.org/10.1113/jphysiol.1994.sp020426
41 https://doi.org/10.1113/jphysiol.2002.021220
42 https://doi.org/10.1126/science.1058040
43 https://doi.org/10.1126/science.1069424
44 https://doi.org/10.1126/science.1142358
45 https://doi.org/10.1126/science.1142364
46 https://doi.org/10.1126/science.97.2510.137
47 https://doi.org/10.1152/jappl.2001.90.5.1936
48 https://doi.org/10.1159/000126908
49 https://doi.org/10.1177/0013164403251283
50 https://doi.org/10.1210/jc.2009-2077
51 https://doi.org/10.1371/journal.pgen.1000477
52 schema:datePublished 2011-02-10
53 schema:datePublishedReg 2011-02-10
54 schema:description The field of exercise genomics is growing at an amazing rate. New technologies such as genotyping chips used for genome-wide association studies (GWAS) have expanded the tools that can be used to uncover the effect genetic variants have on exercise performance and health and fitness-related phenotypes. The statistical methods for analyzing data from these new technologies are still being cultivated and assessed. This chapter will introduce statistical topics such as Hardy–Weinberg equilibrium, linkage disequilibrium, statistical power, sample-sized estimation, and genetic modeling. In addition, the statistical methods for analysis of single genetic variants for categorical and continuous variables are discussed. The chapter concludes by overviewing the statistical hurdles created by GWAS and how GWAS will impact the field of exercise science. This chapter is an extension of the fundamental concepts of exercise genomics presented in Chap. 1 and will continue to add to the breadth of knowledge that can be used by academicians, clinicians, health/fitness professionals, exercise scientists, and other researchers doing and/or considering undertaking work in the complex field of exercise genomics.
55 schema:editor N05305b7dd12c47eb8d9586121a96b8db
56 schema:genre chapter
57 schema:inLanguage en
58 schema:isAccessibleForFree false
59 schema:isPartOf N2fa9e8a20e6a48198f8b8cc08fc7dd8c
60 schema:name Statistical and Methodological Considerations in Exercise Genomics
61 schema:pagination 23-43
62 schema:productId N965424870d2141d09a5769cbb96848d8
63 Naeed49a5e71748888bab131236da5a53
64 Ne5a7bd80069243f0a8a9483a22a131aa
65 schema:publisher N4429f61dc3004e999d4d47bbfabf9518
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008066038
67 https://doi.org/10.1007/978-1-60761-355-8_2
68 schema:sdDatePublished 2019-04-16T08:39
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher Ne4a6fd3548ee47be81a031e0048ca644
71 schema:url https://link.springer.com/10.1007%2F978-1-60761-355-8_2
72 sgo:license sg:explorer/license/
73 sgo:sdDataset chapters
74 rdf:type schema:Chapter
75 N05305b7dd12c47eb8d9586121a96b8db rdf:first Nd8ad1b90fe4e46b89c830a8f6168e208
76 rdf:rest Nebd18fc3cdd54c8d8d9fa3fd14f9944e
77 N2343cdaa84b94112a3a4b8399ae47886 rdf:first sg:person.01250747034.44
78 rdf:rest Neff294ee7c9144bb8af30e6b18c23f0d
79 N2b4db7774f7a44af948832f58df2fad6 schema:familyName Roth
80 schema:givenName Stephen M.
81 rdf:type schema:Person
82 N2fa9e8a20e6a48198f8b8cc08fc7dd8c schema:isbn 978-1-60761-354-1
83 978-1-60761-355-8
84 schema:name Exercise Genomics
85 rdf:type schema:Book
86 N4429f61dc3004e999d4d47bbfabf9518 schema:location Totowa, NJ
87 schema:name Humana Press
88 rdf:type schema:Organisation
89 N965424870d2141d09a5769cbb96848d8 schema:name doi
90 schema:value 10.1007/978-1-60761-355-8_2
91 rdf:type schema:PropertyValue
92 Naeed49a5e71748888bab131236da5a53 schema:name readcube_id
93 schema:value 266d63c9c79a4c2bcf3c12640753059cd4e29983de21a6ac7d6c3140492d6481
94 rdf:type schema:PropertyValue
95 Nd8ad1b90fe4e46b89c830a8f6168e208 schema:familyName Pescatello
96 schema:givenName Linda S.
97 rdf:type schema:Person
98 Ne4a6fd3548ee47be81a031e0048ca644 schema:name Springer Nature - SN SciGraph project
99 rdf:type schema:Organization
100 Ne5a7bd80069243f0a8a9483a22a131aa schema:name dimensions_id
101 schema:value pub.1008066038
102 rdf:type schema:PropertyValue
103 Nebd18fc3cdd54c8d8d9fa3fd14f9944e rdf:first N2b4db7774f7a44af948832f58df2fad6
104 rdf:rest rdf:nil
105 Neff294ee7c9144bb8af30e6b18c23f0d rdf:first sg:person.011202345405.05
106 rdf:rest rdf:nil
107 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
108 schema:name Biological Sciences
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
111 schema:name Genetics
112 rdf:type schema:DefinedTerm
113 sg:person.011202345405.05 schema:affiliation https://www.grid.ac/institutes/grid.239560.b
114 schema:familyName Devaney
115 schema:givenName Joseph M.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011202345405.05
117 rdf:type schema:Person
118 sg:person.01250747034.44 schema:affiliation https://www.grid.ac/institutes/grid.239560.b
119 schema:familyName Gordish-Dressman
120 schema:givenName Heather
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250747034.44
122 rdf:type schema:Person
123 sg:pub.10.1038/35057062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042854081
124 https://doi.org/10.1038/35057062
125 rdf:type schema:CreativeWork
126 sg:pub.10.1038/447655a schema:sameAs https://app.dimensions.ai/details/publication/pub.1027012183
127 https://doi.org/10.1038/447655a
128 rdf:type schema:CreativeWork
129 sg:pub.10.1038/nature02168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033654326
130 https://doi.org/10.1038/nature02168
131 rdf:type schema:CreativeWork
132 sg:pub.10.1038/nature03001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013534924
133 https://doi.org/10.1038/nature03001
134 rdf:type schema:CreativeWork
135 sg:pub.10.1038/nature05616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022931325
136 https://doi.org/10.1038/nature05616
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/ng.120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006325160
139 https://doi.org/10.1038/ng.120
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/ng.75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013290784
142 https://doi.org/10.1038/ng.75
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/ng.76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009408087
145 https://doi.org/10.1038/ng.76
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/nrg1123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004749772
148 https://doi.org/10.1038/nrg1123
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/nrg1521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022754728
151 https://doi.org/10.1038/nrg1521
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/nrg1522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011092335
154 https://doi.org/10.1038/nrg1522
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/sj.ejhg.5201164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017348559
157 https://doi.org/10.1038/sj.ejhg.5201164
158 rdf:type schema:CreativeWork
159 sg:pub.10.1186/1471-2164-10-614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032417234
160 https://doi.org/10.1186/1471-2164-10-614
161 rdf:type schema:CreativeWork
162 sg:pub.10.1186/1471-2350-9-117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017359344
163 https://doi.org/10.1186/1471-2350-9-117
164 rdf:type schema:CreativeWork
165 sg:pub.10.1186/gb-2001-2-7-research0025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035888249
166 https://doi.org/10.1186/gb-2001-2-7-research0025
167 rdf:type schema:CreativeWork
168 sg:pub.10.2165/00007256-200737090-00001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034117732
169 https://doi.org/10.2165/00007256-200737090-00001
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1001/jama.299.11.1335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008034980
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1002/gepi.20244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041952754
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1006/geno.1995.9003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038103610
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.ajhg.2009.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038565648
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.pmr.2005.08.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039739753
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/s0092-8674(01)00467-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044106976
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/s0168-9525(01)02550-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028714464
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/s1471-4892(03)00041-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015953580
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/s1471-4914(03)00138-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038544394
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1038/oby.2007.543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035066200
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1046/j.1469-1809.2005.00155.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009258310
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1056/nejmoa0706728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015188499
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1056/nejmp078120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015498373
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1073/pnas.0709013104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043093522
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1086/302449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058610023
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1086/321275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026846351
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1093/aje/kwj046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005955313
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1093/hmg/11.20.2463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043443883
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1101/gr.5996407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003666581
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1111/j.0006-341x.1999.00997.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021081768
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1113/jphysiol.1994.sp020426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013005692
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1113/jphysiol.2002.021220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031151747
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1126/science.1058040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001517867
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1126/science.1069424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010139737
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1126/science.1142358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062456029
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1126/science.1142364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062456030
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1126/science.97.2510.137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062663483
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1152/jappl.2001.90.5.1936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074798148
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1159/000126908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005729075
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1177/0013164403251283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006150675
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1210/jc.2009-2077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064291732
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1371/journal.pgen.1000477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051911808
234 rdf:type schema:CreativeWork
235 https://www.grid.ac/institutes/grid.239560.b schema:alternateName Children’s National Health System
236 schema:name Children’s National Medical Center, Research Center for Genetic Medicine, 111 Michigan Avenue, N.W., 20010, Washington, DC, USA
237 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...