Multiple Locus Variable Number of Tandem Repeats Analysis View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2009-03-16

AUTHORS

Gilles Vergnaud , Christine Pourcel

ABSTRACT

Genotyping of bacteria through typing of loci containing a variable number of tandem repeats (VNTR) might become the gold standard for many pathogens. The development of genome sequencing has shown that such sequences were present in every species analyzed, and that polymorphism exists in at least a fraction of them. The length of these repetitions can vary from a single nucleotide to a few hundreds. This has implications for both the techniques used to measure the repeat number and the level of variability. In addition, tandem repeats can be part of coding regions or be intergenic and may play a direct role in the adaptation to the environment, thus having different observed evolution rates. For these reasons the choice of VNTR when setting a multiple-loci VNTR analysis (MLVA) assay is important. Although reasonable discrimination can be achieved with the typing of six to eight markers, in particular in species with high genomic diversity, it may be necessary to type 20 to 40 markers in monomorphic species or if an evolutionary meaningful assay is needed. Homoplasy (in the present context, two alleles containing the same repeat copy number in spite of a different history) is then compensated by the analysis of multiple markers. Finally, even if the underlying principles are relatively simple, quality standards must be implemented before this approach is widely accepted, and technology issues must be resolved to further lower the typing costs. More... »

PAGES

141-158

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-60327-999-4_12

DOI

http://dx.doi.org/10.1007/978-1-60327-999-4_12

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045439358

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19521873


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacteria", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electrophoresis, Agar Gel", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electrophoresis, Capillary", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Minisatellite Repeats", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Epidemiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymerase Chain Reaction", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "DGA/D4S -Mission pour la Recherche et l\u2019Innovation Scientifique (MRIS), Arm\u00e9es, and Department of Genetics and Microbiology, University of Paris XI, Orsay, France", 
          "id": "http://www.grid.ac/institutes/grid.5842.b", 
          "name": [
            "DGA/D4S -Mission pour la Recherche et l\u2019Innovation Scientifique (MRIS), Arm\u00e9es, and Department of Genetics and Microbiology, University of Paris XI, Orsay, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vergnaud", 
        "givenName": "Gilles", 
        "id": "sg:person.01366533021.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366533021.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Genetics and Microbiology, University of Paris XI, Orsay, France", 
          "id": "http://www.grid.ac/institutes/grid.5842.b", 
          "name": [
            "Department of Genetics and Microbiology, University of Paris XI, Orsay, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pourcel", 
        "givenName": "Christine", 
        "id": "sg:person.01021627421.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021627421.49"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2009-03-16", 
    "datePublishedReg": "2009-03-16", 
    "description": "Genotyping of bacteria through typing of loci containing a variable number of tandem repeats (VNTR) might become the gold standard for many pathogens. The development of genome sequencing has shown that such sequences were present in every species analyzed, and that polymorphism exists in at least a fraction of them. The length of these repetitions can vary from a single nucleotide to a few hundreds. This has implications for both the techniques used to measure the repeat number and the level of variability. In addition, tandem repeats can be part of coding regions or be intergenic and may play a direct role in the adaptation to the environment, thus having different observed evolution rates. For these reasons the choice of VNTR when setting a multiple-loci VNTR analysis (MLVA) assay is important. Although reasonable discrimination can be achieved with the typing of six to eight markers, in particular in species with high genomic diversity, it may be necessary to type 20 to 40 markers in monomorphic species or if an evolutionary meaningful assay is needed. Homoplasy (in the present context, two alleles containing the same repeat copy number in spite of a different history) is then compensated by the analysis of multiple markers. Finally, even if the underlying principles are relatively simple, quality standards must be implemented before this approach is widely accepted, and technology issues must be resolved to further lower the typing costs.", 
    "editor": [
      {
        "familyName": "Caugant", 
        "givenName": "Dominique A.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-60327-999-4_12", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-60327-998-7", 
        "978-1-60327-999-4"
      ], 
      "name": "Molecular Epidemiology of Microorganisms", 
      "type": "Book"
    }, 
    "keywords": [
      "multiple-locus VNTR analysis", 
      "tandem repeats", 
      "high genomic diversity", 
      "monomorphic species", 
      "genomic diversity", 
      "genome sequencing", 
      "multiple locus variable number", 
      "single nucleotide", 
      "level of variability", 
      "typing cost", 
      "repeat number", 
      "variable number", 
      "direct role", 
      "species", 
      "repeats", 
      "tandem repeat analysis", 
      "VNTR analysis", 
      "repeat analysis", 
      "such sequences", 
      "evolution rate", 
      "multiple markers", 
      "homoplasy", 
      "markers", 
      "loci", 
      "sequencing", 
      "nucleotides", 
      "diversity", 
      "bacteria", 
      "pathogens", 
      "sequence", 
      "meaningful assays", 
      "polymorphism", 
      "assays", 
      "adaptation", 
      "VNTR", 
      "role", 
      "typing", 
      "analysis", 
      "hundreds", 
      "number", 
      "region", 
      "variability", 
      "development", 
      "levels", 
      "environment", 
      "addition", 
      "fraction", 
      "length", 
      "part", 
      "implications", 
      "discrimination", 
      "rate", 
      "approach", 
      "quality standards", 
      "reasons", 
      "technique", 
      "principles", 
      "choice", 
      "repetition", 
      "reasonable discrimination", 
      "cost", 
      "issues", 
      "gold standard", 
      "standards", 
      "technology issues", 
      "typing of loci", 
      "different observed evolution rates", 
      "observed evolution rates", 
      "choice of VNTR", 
      "evolutionary meaningful assay", 
      "Locus Variable Number"
    ], 
    "name": "Multiple Locus Variable Number of Tandem Repeats Analysis", 
    "pagination": "141-158", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045439358"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-60327-999-4_12"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19521873"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-60327-999-4_12", 
      "https://app.dimensions.ai/details/publication/pub.1045439358"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T18:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_174.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-60327-999-4_12"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-60327-999-4_12'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-60327-999-4_12'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-60327-999-4_12'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-60327-999-4_12'


 

This table displays all metadata directly associated to this object as RDF triples.

180 TRIPLES      23 PREDICATES      106 URIs      99 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-60327-999-4_12 schema:about N03a71b8c31444730a115ffe3c89a3d79
2 N4f345c199df647f2ac8ee117d116b67e
3 N642d04028fce437a9de817ac227c9879
4 N66c6f1f6102f44939187e444f5f195c1
5 N6fda43dfa42645478189c4397149d715
6 N85ffbd93e7f8461aa25cdc59f3c1952c
7 Nb68b0bcc433746698a7d461fa8c6e1d7
8 Nb6c36c832760412c982464ab66b793dc
9 Nd866f9fde07f4b5e93469d976d3ec651
10 anzsrc-for:06
11 anzsrc-for:0604
12 schema:author N12d1022ff578441fa8661306166546e4
13 schema:datePublished 2009-03-16
14 schema:datePublishedReg 2009-03-16
15 schema:description Genotyping of bacteria through typing of loci containing a variable number of tandem repeats (VNTR) might become the gold standard for many pathogens. The development of genome sequencing has shown that such sequences were present in every species analyzed, and that polymorphism exists in at least a fraction of them. The length of these repetitions can vary from a single nucleotide to a few hundreds. This has implications for both the techniques used to measure the repeat number and the level of variability. In addition, tandem repeats can be part of coding regions or be intergenic and may play a direct role in the adaptation to the environment, thus having different observed evolution rates. For these reasons the choice of VNTR when setting a multiple-loci VNTR analysis (MLVA) assay is important. Although reasonable discrimination can be achieved with the typing of six to eight markers, in particular in species with high genomic diversity, it may be necessary to type 20 to 40 markers in monomorphic species or if an evolutionary meaningful assay is needed. Homoplasy (in the present context, two alleles containing the same repeat copy number in spite of a different history) is then compensated by the analysis of multiple markers. Finally, even if the underlying principles are relatively simple, quality standards must be implemented before this approach is widely accepted, and technology issues must be resolved to further lower the typing costs.
16 schema:editor N66b9f6d129bb496c9e2ed5dfe6efbfee
17 schema:genre chapter
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N14f72289cab649249b47cb33f05f0c4c
21 schema:keywords Locus Variable Number
22 VNTR
23 VNTR analysis
24 adaptation
25 addition
26 analysis
27 approach
28 assays
29 bacteria
30 choice
31 choice of VNTR
32 cost
33 development
34 different observed evolution rates
35 direct role
36 discrimination
37 diversity
38 environment
39 evolution rate
40 evolutionary meaningful assay
41 fraction
42 genome sequencing
43 genomic diversity
44 gold standard
45 high genomic diversity
46 homoplasy
47 hundreds
48 implications
49 issues
50 length
51 level of variability
52 levels
53 loci
54 markers
55 meaningful assays
56 monomorphic species
57 multiple locus variable number
58 multiple markers
59 multiple-locus VNTR analysis
60 nucleotides
61 number
62 observed evolution rates
63 part
64 pathogens
65 polymorphism
66 principles
67 quality standards
68 rate
69 reasonable discrimination
70 reasons
71 region
72 repeat analysis
73 repeat number
74 repeats
75 repetition
76 role
77 sequence
78 sequencing
79 single nucleotide
80 species
81 standards
82 such sequences
83 tandem repeat analysis
84 tandem repeats
85 technique
86 technology issues
87 typing
88 typing cost
89 typing of loci
90 variability
91 variable number
92 schema:name Multiple Locus Variable Number of Tandem Repeats Analysis
93 schema:pagination 141-158
94 schema:productId N5fedd7210d2b4d7c8bd8ef1e0f82bc1e
95 Nc31c0543c61c49c79ea6f8af068a9a35
96 Ncf93d622644b4e7dbce063ee66bde194
97 schema:publisher Nbc25229d3423405cae1d25441e580923
98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045439358
99 https://doi.org/10.1007/978-1-60327-999-4_12
100 schema:sdDatePublished 2021-11-01T18:49
101 schema:sdLicense https://scigraph.springernature.com/explorer/license/
102 schema:sdPublisher N89f171ffe2f94e7198dbf80678458316
103 schema:url https://doi.org/10.1007/978-1-60327-999-4_12
104 sgo:license sg:explorer/license/
105 sgo:sdDataset chapters
106 rdf:type schema:Chapter
107 N03a71b8c31444730a115ffe3c89a3d79 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Genome, Bacterial
109 rdf:type schema:DefinedTerm
110 N12d1022ff578441fa8661306166546e4 rdf:first sg:person.01366533021.19
111 rdf:rest Nc5b85446d672432b86042cfc0039c05c
112 N14f72289cab649249b47cb33f05f0c4c schema:isbn 978-1-60327-998-7
113 978-1-60327-999-4
114 schema:name Molecular Epidemiology of Microorganisms
115 rdf:type schema:Book
116 N4f345c199df647f2ac8ee117d116b67e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Minisatellite Repeats
118 rdf:type schema:DefinedTerm
119 N5fedd7210d2b4d7c8bd8ef1e0f82bc1e schema:name doi
120 schema:value 10.1007/978-1-60327-999-4_12
121 rdf:type schema:PropertyValue
122 N642d04028fce437a9de817ac227c9879 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Molecular Epidemiology
124 rdf:type schema:DefinedTerm
125 N66b9f6d129bb496c9e2ed5dfe6efbfee rdf:first Nb85e19730fcc4aadae37c334cbe565c3
126 rdf:rest rdf:nil
127 N66c6f1f6102f44939187e444f5f195c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Electrophoresis, Capillary
129 rdf:type schema:DefinedTerm
130 N6fda43dfa42645478189c4397149d715 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Electrophoresis, Agar Gel
132 rdf:type schema:DefinedTerm
133 N85ffbd93e7f8461aa25cdc59f3c1952c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Polymerase Chain Reaction
135 rdf:type schema:DefinedTerm
136 N89f171ffe2f94e7198dbf80678458316 schema:name Springer Nature - SN SciGraph project
137 rdf:type schema:Organization
138 Nb68b0bcc433746698a7d461fa8c6e1d7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Bacteria
140 rdf:type schema:DefinedTerm
141 Nb6c36c832760412c982464ab66b793dc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Humans
143 rdf:type schema:DefinedTerm
144 Nb85e19730fcc4aadae37c334cbe565c3 schema:familyName Caugant
145 schema:givenName Dominique A.
146 rdf:type schema:Person
147 Nbc25229d3423405cae1d25441e580923 schema:name Springer Nature
148 rdf:type schema:Organisation
149 Nc31c0543c61c49c79ea6f8af068a9a35 schema:name dimensions_id
150 schema:value pub.1045439358
151 rdf:type schema:PropertyValue
152 Nc5b85446d672432b86042cfc0039c05c rdf:first sg:person.01021627421.49
153 rdf:rest rdf:nil
154 Ncf93d622644b4e7dbce063ee66bde194 schema:name pubmed_id
155 schema:value 19521873
156 rdf:type schema:PropertyValue
157 Nd866f9fde07f4b5e93469d976d3ec651 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name DNA, Bacterial
159 rdf:type schema:DefinedTerm
160 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
161 schema:name Biological Sciences
162 rdf:type schema:DefinedTerm
163 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
164 schema:name Genetics
165 rdf:type schema:DefinedTerm
166 sg:person.01021627421.49 schema:affiliation grid-institutes:grid.5842.b
167 schema:familyName Pourcel
168 schema:givenName Christine
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021627421.49
170 rdf:type schema:Person
171 sg:person.01366533021.19 schema:affiliation grid-institutes:grid.5842.b
172 schema:familyName Vergnaud
173 schema:givenName Gilles
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366533021.19
175 rdf:type schema:Person
176 grid-institutes:grid.5842.b schema:alternateName DGA/D4S -Mission pour la Recherche et l’Innovation Scientifique (MRIS), Armées, and Department of Genetics and Microbiology, University of Paris XI, Orsay, France
177 Department of Genetics and Microbiology, University of Paris XI, Orsay, France
178 schema:name DGA/D4S -Mission pour la Recherche et l’Innovation Scientifique (MRIS), Armées, and Department of Genetics and Microbiology, University of Paris XI, Orsay, France
179 Department of Genetics and Microbiology, University of Paris XI, Orsay, France
180 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...