Ontology type: schema:Chapter
2009-08-31
AUTHORS ABSTRACTOsteoporosis is currently defined as a condition of skeletal fragility due to decreased bone mass and to microarchitectural deterioration of bone tissue, with consequent increased risk of fracture. The condition is multifactorial in pathogenesis. Nutrition affects bone health in two distinct ways. First, bone tissue deposition, maintenance, and repair are the result of cellular processes, which are as dependent on nutrition as are the corresponding processes of any other tissue. The production of bone matrix, for example, requires the synthesis and post-translational modification of collagen and an array of other proteins. Nutrients involved in these cellular activities include not only the amino acid building blocks of the protein itself, but vitamins C, D, and K, and the minerals phosphorus, copper, manganese, and zinc. Additionally, the regulation of calcium homeostasis through modulation of bone resorption requires normal magnesium nutrition. Second, the skeleton serves as a very large nutrient reserve for two elements, calcium and phosphorus. More... »
PAGES443-469
Preventive Nutrition
ISBN
978-1-60327-541-5
978-1-60327-542-2
http://scigraph.springernature.com/pub.10.1007/978-1-60327-542-2_19
DOIhttp://dx.doi.org/10.1007/978-1-60327-542-2_19
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1006066609
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Medical and Health Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biochemistry and Cell Biology",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Clinical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Medicine, Creighton University, 68178, Omaha, Nebraska, USA",
"id": "http://www.grid.ac/institutes/grid.254748.8",
"name": [
"Department of Medicine, Creighton University, 68178, Omaha, Nebraska, USA"
],
"type": "Organization"
},
"familyName": "Heaney",
"givenName": "Robert P.",
"id": "sg:person.0645437522.96",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645437522.96"
],
"type": "Person"
}
],
"datePublished": "2009-08-31",
"datePublishedReg": "2009-08-31",
"description": "Osteoporosis is currently defined as a condition of skeletal fragility due to decreased bone mass and to microarchitectural deterioration of bone tissue, with consequent increased risk of fracture. The condition is multifactorial in pathogenesis. Nutrition affects bone health in two distinct ways. First, bone tissue deposition, maintenance, and repair are the result of cellular processes, which are as dependent on nutrition as are the corresponding processes of any other tissue. The production of bone matrix, for example, requires the synthesis and post-translational modification of collagen and an array of other proteins. Nutrients involved in these cellular activities include not only the amino acid building blocks of the protein itself, but vitamins C, D, and K, and the minerals phosphorus, copper, manganese, and zinc. Additionally, the regulation of calcium homeostasis through modulation of bone resorption requires normal magnesium nutrition. Second, the skeleton serves as a very large nutrient reserve for two elements, calcium and phosphorus.",
"editor": [
{
"familyName": "Bendich",
"givenName": "Adrianne",
"type": "Person"
},
{
"familyName": "Deckelbaum",
"givenName": "Richard J.",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-1-60327-542-2_19",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-1-60327-541-5",
"978-1-60327-542-2"
],
"name": "Preventive Nutrition",
"type": "Book"
},
"keywords": [
"risk of fracture",
"microarchitectural deterioration",
"bone health",
"fracture prevention",
"bone resorption",
"bone mass",
"skeletal fragility",
"calcium homeostasis",
"tissue deposition",
"vitamin C",
"osteoporosis",
"bone tissue deposition",
"bone matrix",
"nutrition",
"bone tissue",
"tissue",
"large nutrient reserves",
"post-translational modifications",
"pathogenesis",
"cellular processes",
"resorption",
"cellular activities",
"prevention",
"nutrient reserves",
"diet",
"amino acids",
"risk",
"protein",
"homeostasis",
"health",
"repair",
"calcium",
"fractures",
"collagen",
"magnesium nutrition",
"deterioration",
"evidence",
"modulation",
"activity",
"regulation",
"mineral phosphorus",
"fragility",
"maintenance",
"acid",
"mass",
"nutrients",
"phosphorus",
"distinct ways",
"conditions",
"zinc",
"reserves",
"production",
"results",
"modification",
"skeleton",
"block",
"synthesis",
"process",
"totality",
"deposition",
"corresponding process",
"array",
"manganese",
"elements",
"way",
"matrix",
"copper",
"example"
],
"name": "Diet, Osteoporosis, and Fracture Prevention: The Totality of the Evidence",
"pagination": "443-469",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1006066609"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-1-60327-542-2_19"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-1-60327-542-2_19",
"https://app.dimensions.ai/details/publication/pub.1006066609"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-08-04T17:14",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/chapter/chapter_113.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-1-60327-542-2_19"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-60327-542-2_19'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-60327-542-2_19'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-60327-542-2_19'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-60327-542-2_19'
This table displays all metadata directly associated to this object as RDF triples.
140 TRIPLES
22 PREDICATES
94 URIs
85 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-1-60327-542-2_19 | schema:about | anzsrc-for:06 |
2 | ″ | ″ | anzsrc-for:0601 |
3 | ″ | ″ | anzsrc-for:11 |
4 | ″ | ″ | anzsrc-for:1103 |
5 | ″ | schema:author | Nc0a2401cde744a7db115217cbba6bb82 |
6 | ″ | schema:datePublished | 2009-08-31 |
7 | ″ | schema:datePublishedReg | 2009-08-31 |
8 | ″ | schema:description | Osteoporosis is currently defined as a condition of skeletal fragility due to decreased bone mass and to microarchitectural deterioration of bone tissue, with consequent increased risk of fracture. The condition is multifactorial in pathogenesis. Nutrition affects bone health in two distinct ways. First, bone tissue deposition, maintenance, and repair are the result of cellular processes, which are as dependent on nutrition as are the corresponding processes of any other tissue. The production of bone matrix, for example, requires the synthesis and post-translational modification of collagen and an array of other proteins. Nutrients involved in these cellular activities include not only the amino acid building blocks of the protein itself, but vitamins C, D, and K, and the minerals phosphorus, copper, manganese, and zinc. Additionally, the regulation of calcium homeostasis through modulation of bone resorption requires normal magnesium nutrition. Second, the skeleton serves as a very large nutrient reserve for two elements, calcium and phosphorus. |
9 | ″ | schema:editor | N545a7e0435644e9a9beb2dc94900d9d4 |
10 | ″ | schema:genre | chapter |
11 | ″ | schema:isAccessibleForFree | false |
12 | ″ | schema:isPartOf | N062f7f558b814ea1a321362dacadf4bb |
13 | ″ | schema:keywords | acid |
14 | ″ | ″ | activity |
15 | ″ | ″ | amino acids |
16 | ″ | ″ | array |
17 | ″ | ″ | block |
18 | ″ | ″ | bone health |
19 | ″ | ″ | bone mass |
20 | ″ | ″ | bone matrix |
21 | ″ | ″ | bone resorption |
22 | ″ | ″ | bone tissue |
23 | ″ | ″ | bone tissue deposition |
24 | ″ | ″ | calcium |
25 | ″ | ″ | calcium homeostasis |
26 | ″ | ″ | cellular activities |
27 | ″ | ″ | cellular processes |
28 | ″ | ″ | collagen |
29 | ″ | ″ | conditions |
30 | ″ | ″ | copper |
31 | ″ | ″ | corresponding process |
32 | ″ | ″ | deposition |
33 | ″ | ″ | deterioration |
34 | ″ | ″ | diet |
35 | ″ | ″ | distinct ways |
36 | ″ | ″ | elements |
37 | ″ | ″ | evidence |
38 | ″ | ″ | example |
39 | ″ | ″ | fracture prevention |
40 | ″ | ″ | fractures |
41 | ″ | ″ | fragility |
42 | ″ | ″ | health |
43 | ″ | ″ | homeostasis |
44 | ″ | ″ | large nutrient reserves |
45 | ″ | ″ | magnesium nutrition |
46 | ″ | ″ | maintenance |
47 | ″ | ″ | manganese |
48 | ″ | ″ | mass |
49 | ″ | ″ | matrix |
50 | ″ | ″ | microarchitectural deterioration |
51 | ″ | ″ | mineral phosphorus |
52 | ″ | ″ | modification |
53 | ″ | ″ | modulation |
54 | ″ | ″ | nutrient reserves |
55 | ″ | ″ | nutrients |
56 | ″ | ″ | nutrition |
57 | ″ | ″ | osteoporosis |
58 | ″ | ″ | pathogenesis |
59 | ″ | ″ | phosphorus |
60 | ″ | ″ | post-translational modifications |
61 | ″ | ″ | prevention |
62 | ″ | ″ | process |
63 | ″ | ″ | production |
64 | ″ | ″ | protein |
65 | ″ | ″ | regulation |
66 | ″ | ″ | repair |
67 | ″ | ″ | reserves |
68 | ″ | ″ | resorption |
69 | ″ | ″ | results |
70 | ″ | ″ | risk |
71 | ″ | ″ | risk of fracture |
72 | ″ | ″ | skeletal fragility |
73 | ″ | ″ | skeleton |
74 | ″ | ″ | synthesis |
75 | ″ | ″ | tissue |
76 | ″ | ″ | tissue deposition |
77 | ″ | ″ | totality |
78 | ″ | ″ | vitamin C |
79 | ″ | ″ | way |
80 | ″ | ″ | zinc |
81 | ″ | schema:name | Diet, Osteoporosis, and Fracture Prevention: The Totality of the Evidence |
82 | ″ | schema:pagination | 443-469 |
83 | ″ | schema:productId | N9400618e85774e1eae25c62cbb804b31 |
84 | ″ | ″ | Nd2571e5c5322480f897405f118fe4c24 |
85 | ″ | schema:publisher | N7e64541070f94c2eb7bf8d220697f06e |
86 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1006066609 |
87 | ″ | ″ | https://doi.org/10.1007/978-1-60327-542-2_19 |
88 | ″ | schema:sdDatePublished | 2022-08-04T17:14 |
89 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
90 | ″ | schema:sdPublisher | N0f0bad61aa6a48b59644a3b998e96187 |
91 | ″ | schema:url | https://doi.org/10.1007/978-1-60327-542-2_19 |
92 | ″ | sgo:license | sg:explorer/license/ |
93 | ″ | sgo:sdDataset | chapters |
94 | ″ | rdf:type | schema:Chapter |
95 | N062f7f558b814ea1a321362dacadf4bb | schema:isbn | 978-1-60327-541-5 |
96 | ″ | ″ | 978-1-60327-542-2 |
97 | ″ | schema:name | Preventive Nutrition |
98 | ″ | rdf:type | schema:Book |
99 | N0f0bad61aa6a48b59644a3b998e96187 | schema:name | Springer Nature - SN SciGraph project |
100 | ″ | rdf:type | schema:Organization |
101 | N1384a0faceaf480db162cd74b3636e7c | rdf:first | Ncd01772fdb144aa6bda8e4ace4702f04 |
102 | ″ | rdf:rest | rdf:nil |
103 | N545a7e0435644e9a9beb2dc94900d9d4 | rdf:first | Ne895afcd00a5479996bff951d0596504 |
104 | ″ | rdf:rest | N1384a0faceaf480db162cd74b3636e7c |
105 | N7e64541070f94c2eb7bf8d220697f06e | schema:name | Springer Nature |
106 | ″ | rdf:type | schema:Organisation |
107 | N9400618e85774e1eae25c62cbb804b31 | schema:name | doi |
108 | ″ | schema:value | 10.1007/978-1-60327-542-2_19 |
109 | ″ | rdf:type | schema:PropertyValue |
110 | Nc0a2401cde744a7db115217cbba6bb82 | rdf:first | sg:person.0645437522.96 |
111 | ″ | rdf:rest | rdf:nil |
112 | Ncd01772fdb144aa6bda8e4ace4702f04 | schema:familyName | Deckelbaum |
113 | ″ | schema:givenName | Richard J. |
114 | ″ | rdf:type | schema:Person |
115 | Nd2571e5c5322480f897405f118fe4c24 | schema:name | dimensions_id |
116 | ″ | schema:value | pub.1006066609 |
117 | ″ | rdf:type | schema:PropertyValue |
118 | Ne895afcd00a5479996bff951d0596504 | schema:familyName | Bendich |
119 | ″ | schema:givenName | Adrianne |
120 | ″ | rdf:type | schema:Person |
121 | anzsrc-for:06 | schema:inDefinedTermSet | anzsrc-for: |
122 | ″ | schema:name | Biological Sciences |
123 | ″ | rdf:type | schema:DefinedTerm |
124 | anzsrc-for:0601 | schema:inDefinedTermSet | anzsrc-for: |
125 | ″ | schema:name | Biochemistry and Cell Biology |
126 | ″ | rdf:type | schema:DefinedTerm |
127 | anzsrc-for:11 | schema:inDefinedTermSet | anzsrc-for: |
128 | ″ | schema:name | Medical and Health Sciences |
129 | ″ | rdf:type | schema:DefinedTerm |
130 | anzsrc-for:1103 | schema:inDefinedTermSet | anzsrc-for: |
131 | ″ | schema:name | Clinical Sciences |
132 | ″ | rdf:type | schema:DefinedTerm |
133 | sg:person.0645437522.96 | schema:affiliation | grid-institutes:grid.254748.8 |
134 | ″ | schema:familyName | Heaney |
135 | ″ | schema:givenName | Robert P. |
136 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645437522.96 |
137 | ″ | rdf:type | schema:Person |
138 | grid-institutes:grid.254748.8 | schema:alternateName | Department of Medicine, Creighton University, 68178, Omaha, Nebraska, USA |
139 | ″ | schema:name | Department of Medicine, Creighton University, 68178, Omaha, Nebraska, USA |
140 | ″ | rdf:type | schema:Organization |