Next-Generation Sequencing Methods: Impact of Sequencing Accuracy on SNP Discovery View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2009

AUTHORS

Eugene Y Chan

ABSTRACT

The advent of next-generation sequencing technologies has spurred remarkable progress in the field of genomics. Whereas traditional Sanger sequencing has yielded the first complete human genome sequence, next-generation methods have been able to resequence several human genomes. In this manner, next-generation approaches have powerful capabilities for understanding human variation. The throughput for these approaches is often measured in billions of base pairs per run, astounding numbers when compared with the millions of base pairs per day generated by automated capillary DNA sequencers. However, unlike traditional Sanger dideoxy sequencing, these methods have lower accuracy and shorter read lengths than the dideoxy gold standard. Are these limitations offset by the higher throughputs? An in-depth look at the single read and composite accuracy of these methods is presented. The stringent requirements for single nucleotide polymorphism (SNP) discovery utilizing these approaches is discussed along with a review of studies that have successfully employed next-generation sequencing methods for large-scale SNP discovery. Ultimately, the application of these ultra-high-throughput sequencing methods for SNP discovery will open up new horizons for understanding human genomic variation. More... »

PAGES

95-111

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-60327-411-1_5

DOI

http://dx.doi.org/10.1007/978-1-60327-411-1_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047862895

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19768588


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacteria", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Base Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Caenorhabditis elegans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Consensus Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Human", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "INDEL Mutation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Single Nucleotide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "DNA Medicine Institute (United States)", 
          "id": "https://www.grid.ac/institutes/grid.475174.4", 
          "name": [
            "The DNA Medicine Institute, Boston, MA, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chan", 
        "givenName": "Eugene Y", 
        "id": "sg:person.01123754264.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123754264.92"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1126/science.1058040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001517867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001773338", 
          "https://doi.org/10.1038/nmeth.1179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/cr.2008.282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007691905", 
          "https://doi.org/10.1038/cr.2008.282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1117389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010697532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.86.23.9253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014696233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-7-275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020268444", 
          "https://doi.org/10.1186/1471-2164-7-275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021574562", 
          "https://doi.org/10.1038/nature03959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021574562", 
          "https://doi.org/10.1038/nature03959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023481670", 
          "https://doi.org/10.1038/ng1925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023481670", 
          "https://doi.org/10.1038/ng1925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng2080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025292804", 
          "https://doi.org/10.1038/ng2080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1150427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030422156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gnh069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032743809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1000160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035500960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2007-8-7-r143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037510125", 
          "https://doi.org/10.1186/gb-2007-8-7-r143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.074740.107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038290546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.8.3.186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038920266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.070227.107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042723615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35057062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042854081", 
          "https://doi.org/10.1038/35057062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35057062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042854081", 
          "https://doi.org/10.1038/35057062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkn425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044990606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.079558.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045837493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06884", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047672670", 
          "https://doi.org/10.1038/nature06884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.8.3.175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048253030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth0807-613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051261645", 
          "https://doi.org/10.1038/nmeth0807-613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/dna.1996.15.589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059251595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1517/14622416.5.4.433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067587781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1517/14622416.6.4.373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067587881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1517/14622416.6.4.373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067587881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.8.5.557", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083259066"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009", 
    "datePublishedReg": "2009-01-01", 
    "description": "The advent of next-generation sequencing technologies has spurred remarkable progress in the field of genomics. Whereas traditional Sanger sequencing has yielded the first complete human genome sequence, next-generation methods have been able to resequence several human genomes. In this manner, next-generation approaches have powerful capabilities for understanding human variation. The throughput for these approaches is often measured in billions of base pairs per run, astounding numbers when compared with the millions of base pairs per day generated by automated capillary DNA sequencers. However, unlike traditional Sanger dideoxy sequencing, these methods have lower accuracy and shorter read lengths than the dideoxy gold standard. Are these limitations offset by the higher throughputs? An in-depth look at the single read and composite accuracy of these methods is presented. The stringent requirements for single nucleotide polymorphism (SNP) discovery utilizing these approaches is discussed along with a review of studies that have successfully employed next-generation sequencing methods for large-scale SNP discovery. Ultimately, the application of these ultra-high-throughput sequencing methods for SNP discovery will open up new horizons for understanding human genomic variation.", 
    "editor": [
      {
        "familyName": "Komar", 
        "givenName": "Anton A.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-60327-411-1_5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-60327-410-4", 
        "978-1-60327-411-1"
      ], 
      "name": "Single Nucleotide Polymorphisms", 
      "type": "Book"
    }, 
    "name": "Next-Generation Sequencing Methods: Impact of Sequencing Accuracy on SNP Discovery", 
    "pagination": "95-111", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-60327-411-1_5"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e401d69e0e4d8b8a1daa16a99827b1c53aa5333a168b4a46fa81551daedf9ccd"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047862895"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19768588"
        ]
      }
    ], 
    "publisher": {
      "location": "Totowa, NJ", 
      "name": "Humana Press", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-60327-411-1_5", 
      "https://app.dimensions.ai/details/publication/pub.1047862895"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T22:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000273.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-1-60327-411-1_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-60327-411-1_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-60327-411-1_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-60327-411-1_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-60327-411-1_5'


 

This table displays all metadata directly associated to this object as RDF triples.

197 TRIPLES      23 PREDICATES      64 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-60327-411-1_5 schema:about N06809f636ee14d70bc988e82826407fb
2 N16d43b3fbc10477193893f54d5bb2f08
3 N45950b2eb07c4607b3c2ef4772fe0845
4 N4fb57e1f11384de8a871def4e9764cd4
5 N52d7d94425dd452090d266a23d389c63
6 N5f115b89e1d6476893ec9476d2785f12
7 N79ec4c3fb695461b8b42814b9682d8b9
8 Nb0d4b4b894294dcd8e422e96c0c7cbeb
9 Nbf3684ebf6494c45b35ef900bee5691a
10 Nc51c19e3d852452e89bf32f04f99aac7
11 anzsrc-for:06
12 anzsrc-for:0604
13 schema:author Nd6cb2ec2958846959d64a7efeb864d8e
14 schema:citation sg:pub.10.1038/35057062
15 sg:pub.10.1038/cr.2008.282
16 sg:pub.10.1038/nature03959
17 sg:pub.10.1038/nature06884
18 sg:pub.10.1038/ng1925
19 sg:pub.10.1038/ng2080
20 sg:pub.10.1038/nmeth.1179
21 sg:pub.10.1038/nmeth0807-613
22 sg:pub.10.1186/1471-2164-7-275
23 sg:pub.10.1186/gb-2007-8-7-r143
24 https://doi.org/10.1073/pnas.86.23.9253
25 https://doi.org/10.1089/dna.1996.15.589
26 https://doi.org/10.1093/nar/gkn425
27 https://doi.org/10.1093/nar/gnh069
28 https://doi.org/10.1101/gr.070227.107
29 https://doi.org/10.1101/gr.074740.107
30 https://doi.org/10.1101/gr.079558.108
31 https://doi.org/10.1101/gr.8.3.175
32 https://doi.org/10.1101/gr.8.3.186
33 https://doi.org/10.1101/gr.8.5.557
34 https://doi.org/10.1126/science.1058040
35 https://doi.org/10.1126/science.1117389
36 https://doi.org/10.1126/science.1150427
37 https://doi.org/10.1371/journal.pgen.1000160
38 https://doi.org/10.1517/14622416.5.4.433
39 https://doi.org/10.1517/14622416.6.4.373
40 schema:datePublished 2009
41 schema:datePublishedReg 2009-01-01
42 schema:description The advent of next-generation sequencing technologies has spurred remarkable progress in the field of genomics. Whereas traditional Sanger sequencing has yielded the first complete human genome sequence, next-generation methods have been able to resequence several human genomes. In this manner, next-generation approaches have powerful capabilities for understanding human variation. The throughput for these approaches is often measured in billions of base pairs per run, astounding numbers when compared with the millions of base pairs per day generated by automated capillary DNA sequencers. However, unlike traditional Sanger dideoxy sequencing, these methods have lower accuracy and shorter read lengths than the dideoxy gold standard. Are these limitations offset by the higher throughputs? An in-depth look at the single read and composite accuracy of these methods is presented. The stringent requirements for single nucleotide polymorphism (SNP) discovery utilizing these approaches is discussed along with a review of studies that have successfully employed next-generation sequencing methods for large-scale SNP discovery. Ultimately, the application of these ultra-high-throughput sequencing methods for SNP discovery will open up new horizons for understanding human genomic variation.
43 schema:editor Nd22bff1743974e8dafbf98c6fe8ab04d
44 schema:genre chapter
45 schema:inLanguage en
46 schema:isAccessibleForFree false
47 schema:isPartOf Nbc25df723c6c440690a584e7b6db3de0
48 schema:name Next-Generation Sequencing Methods: Impact of Sequencing Accuracy on SNP Discovery
49 schema:pagination 95-111
50 schema:productId N08ea21e9d5764269bac1a20fea9a6d9f
51 Nb4697cd3d69a421b9a28ec87e4cdf38e
52 Nc054a8a484534f1a900084362cc1956e
53 Nda8adc3baa184e97a1df2a7859b38f70
54 schema:publisher Nfed5a135185f4578a038b3e2fccafec6
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047862895
56 https://doi.org/10.1007/978-1-60327-411-1_5
57 schema:sdDatePublished 2019-04-15T22:58
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N9f5086f53ed24256bebf35c0e94ae193
60 schema:url http://link.springer.com/10.1007/978-1-60327-411-1_5
61 sgo:license sg:explorer/license/
62 sgo:sdDataset chapters
63 rdf:type schema:Chapter
64 N06809f636ee14d70bc988e82826407fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Consensus Sequence
66 rdf:type schema:DefinedTerm
67 N08ea21e9d5764269bac1a20fea9a6d9f schema:name pubmed_id
68 schema:value 19768588
69 rdf:type schema:PropertyValue
70 N13aa4b72b30d4453827dd6fdd47792f2 schema:familyName Komar
71 schema:givenName Anton A.
72 rdf:type schema:Person
73 N16d43b3fbc10477193893f54d5bb2f08 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name INDEL Mutation
75 rdf:type schema:DefinedTerm
76 N45950b2eb07c4607b3c2ef4772fe0845 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Animals
78 rdf:type schema:DefinedTerm
79 N4fb57e1f11384de8a871def4e9764cd4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Genome, Human
81 rdf:type schema:DefinedTerm
82 N52d7d94425dd452090d266a23d389c63 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Bacteria
84 rdf:type schema:DefinedTerm
85 N5f115b89e1d6476893ec9476d2785f12 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Polymorphism, Single Nucleotide
87 rdf:type schema:DefinedTerm
88 N79ec4c3fb695461b8b42814b9682d8b9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Sequence Analysis, DNA
90 rdf:type schema:DefinedTerm
91 N9f5086f53ed24256bebf35c0e94ae193 schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 Nb0d4b4b894294dcd8e422e96c0c7cbeb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Base Sequence
95 rdf:type schema:DefinedTerm
96 Nb4697cd3d69a421b9a28ec87e4cdf38e schema:name dimensions_id
97 schema:value pub.1047862895
98 rdf:type schema:PropertyValue
99 Nbc25df723c6c440690a584e7b6db3de0 schema:isbn 978-1-60327-410-4
100 978-1-60327-411-1
101 schema:name Single Nucleotide Polymorphisms
102 rdf:type schema:Book
103 Nbf3684ebf6494c45b35ef900bee5691a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Caenorhabditis elegans
105 rdf:type schema:DefinedTerm
106 Nc054a8a484534f1a900084362cc1956e schema:name doi
107 schema:value 10.1007/978-1-60327-411-1_5
108 rdf:type schema:PropertyValue
109 Nc51c19e3d852452e89bf32f04f99aac7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Humans
111 rdf:type schema:DefinedTerm
112 Nd22bff1743974e8dafbf98c6fe8ab04d rdf:first N13aa4b72b30d4453827dd6fdd47792f2
113 rdf:rest rdf:nil
114 Nd6cb2ec2958846959d64a7efeb864d8e rdf:first sg:person.01123754264.92
115 rdf:rest rdf:nil
116 Nda8adc3baa184e97a1df2a7859b38f70 schema:name readcube_id
117 schema:value e401d69e0e4d8b8a1daa16a99827b1c53aa5333a168b4a46fa81551daedf9ccd
118 rdf:type schema:PropertyValue
119 Nfed5a135185f4578a038b3e2fccafec6 schema:location Totowa, NJ
120 schema:name Humana Press
121 rdf:type schema:Organisation
122 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
123 schema:name Biological Sciences
124 rdf:type schema:DefinedTerm
125 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
126 schema:name Genetics
127 rdf:type schema:DefinedTerm
128 sg:person.01123754264.92 schema:affiliation https://www.grid.ac/institutes/grid.475174.4
129 schema:familyName Chan
130 schema:givenName Eugene Y
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123754264.92
132 rdf:type schema:Person
133 sg:pub.10.1038/35057062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042854081
134 https://doi.org/10.1038/35057062
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/cr.2008.282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007691905
137 https://doi.org/10.1038/cr.2008.282
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/nature03959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021574562
140 https://doi.org/10.1038/nature03959
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/nature06884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047672670
143 https://doi.org/10.1038/nature06884
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/ng1925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023481670
146 https://doi.org/10.1038/ng1925
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/ng2080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025292804
149 https://doi.org/10.1038/ng2080
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/nmeth.1179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001773338
152 https://doi.org/10.1038/nmeth.1179
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/nmeth0807-613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051261645
155 https://doi.org/10.1038/nmeth0807-613
156 rdf:type schema:CreativeWork
157 sg:pub.10.1186/1471-2164-7-275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020268444
158 https://doi.org/10.1186/1471-2164-7-275
159 rdf:type schema:CreativeWork
160 sg:pub.10.1186/gb-2007-8-7-r143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037510125
161 https://doi.org/10.1186/gb-2007-8-7-r143
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1073/pnas.86.23.9253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014696233
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1089/dna.1996.15.589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059251595
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1093/nar/gkn425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044990606
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1093/nar/gnh069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032743809
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1101/gr.070227.107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042723615
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1101/gr.074740.107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038290546
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1101/gr.079558.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045837493
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1101/gr.8.3.175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048253030
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1101/gr.8.3.186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038920266
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1101/gr.8.5.557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083259066
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1126/science.1058040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001517867
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1126/science.1117389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010697532
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1126/science.1150427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030422156
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1371/journal.pgen.1000160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035500960
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1517/14622416.5.4.433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067587781
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1517/14622416.6.4.373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067587881
194 rdf:type schema:CreativeWork
195 https://www.grid.ac/institutes/grid.475174.4 schema:alternateName DNA Medicine Institute (United States)
196 schema:name The DNA Medicine Institute, Boston, MA, USA.
197 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...