Ontology type: schema:Chapter Open Access: True
2009-10-30
AUTHORS ABSTRACTThe Support Vector Machine (SVM) is a widely used classifier in bioinformatics. Obtaining the best results with SVMs requires an understanding of their workings and the various ways a user can influence their accuracy. We provide the user with a basic understanding of the theory behind SVMs and focus on their use in practice. We describe the effect of the SVM parameters on the resulting classifier, how to select good values for those parameters, data normalization, factors that affect training time, and software for training SVMs. More... »
PAGES223-239
Data Mining Techniques for the Life Sciences
ISBN
978-1-60327-240-7
978-1-60327-241-4
http://scigraph.springernature.com/pub.10.1007/978-1-60327-241-4_13
DOIhttp://dx.doi.org/10.1007/978-1-60327-241-4_13
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1042784786
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/20221922
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Algorithms",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Artificial Intelligence",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Computational Biology",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Data Mining",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Databases, Factual",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Linear Models",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Models, Statistical",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Nonlinear Dynamics",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Normal Distribution",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Software",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Colorado State University",
"id": "https://www.grid.ac/institutes/grid.47894.36",
"name": [
"Department of Computer Science, Colorado State University, Fort Collins, CO, USA"
],
"type": "Organization"
},
"familyName": "Ben-Hur",
"givenName": "Asa",
"id": "sg:person.01242755504.30",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242755504.30"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"NEC Labs America, Princeton, NJ, USA"
],
"type": "Organization"
},
"familyName": "Weston",
"givenName": "Jason",
"id": "sg:person.01242545503.37",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242545503.37"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1145/1148170.1148253",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010464079"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-35488-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021763913",
"https://doi.org/10.1007/978-3-540-35488-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-35488-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021763913",
"https://doi.org/10.1007/978-3-540-35488-8"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1022356842",
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-0-387-21606-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022356842",
"https://doi.org/10.1007/978-0-387-21606-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-0-387-21606-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022356842",
"https://doi.org/10.1007/978-0-387-21606-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00994018",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025150743",
"https://doi.org/10.1007/bf00994018"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/130385.130401",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036379424"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-30116-5_58",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039779667",
"https://doi.org/10.1007/978-3-540-30116-5_58"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/1150402.1150429",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044904927"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/1150402.1150531",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046643530"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1012487302797",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048573168",
"https://doi.org/10.1023/a:1012487302797"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nbt1206-1565",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051026888",
"https://doi.org/10.1038/nbt1206-1565"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nbt1206-1565",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051026888",
"https://doi.org/10.1038/nbt1206-1565"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1017/cbo9780511809682",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1098667572"
],
"type": "CreativeWork"
}
],
"datePublished": "2009-10-30",
"datePublishedReg": "2009-10-30",
"description": "The Support Vector Machine (SVM) is a widely used classifier in bioinformatics. Obtaining the best results with SVMs requires an understanding of their workings and the various ways a user can influence their accuracy. We provide the user with a basic understanding of the theory behind SVMs and focus on their use in practice. We describe the effect of the SVM parameters on the resulting classifier, how to select good values for those parameters, data normalization, factors that affect training time, and software for training SVMs.",
"editor": [
{
"familyName": "Carugo",
"givenName": "Oliviero",
"type": "Person"
},
{
"familyName": "Eisenhaber",
"givenName": "Frank",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-1-60327-241-4_13",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isPartOf": {
"isbn": [
"978-1-60327-240-7",
"978-1-60327-241-4"
],
"name": "Data Mining Techniques for the Life Sciences",
"type": "Book"
},
"name": "A User\u2019s Guide to Support Vector Machines",
"pagination": "223-239",
"productId": [
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"20221922"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1042784786"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-1-60327-241-4_13"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"cbcd536938cbb35b09e4a36f370503f4576693dc823696ad9ffd83e2980a7386"
]
}
],
"publisher": {
"location": "Totowa, NJ",
"name": "Humana Press",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-1-60327-241-4_13",
"https://app.dimensions.ai/details/publication/pub.1042784786"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-16T07:32",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000356_0000000356/records_57904_00000000.jsonl",
"type": "Chapter",
"url": "https://link.springer.com/10.1007%2F978-1-60327-241-4_13"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-60327-241-4_13'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-60327-241-4_13'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-60327-241-4_13'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-60327-241-4_13'
This table displays all metadata directly associated to this object as RDF triples.
164 TRIPLES
23 PREDICATES
49 URIs
30 LITERALS
19 BLANK NODES