A User’s Guide to Support Vector Machines View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2009-10-30

AUTHORS

Asa Ben-Hur , Jason Weston

ABSTRACT

The Support Vector Machine (SVM) is a widely used classifier in bioinformatics. Obtaining the best results with SVMs requires an understanding of their workings and the various ways a user can influence their accuracy. We provide the user with a basic understanding of the theory behind SVMs and focus on their use in practice. We describe the effect of the SVM parameters on the resulting classifier, how to select good values for those parameters, data normalization, factors that affect training time, and software for training SVMs. More... »

PAGES

223-239

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-60327-241-4_13

DOI

http://dx.doi.org/10.1007/978-1-60327-241-4_13

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042784786

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20221922


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Artificial Intelligence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Mining", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Factual", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Linear Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nonlinear Dynamics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Normal Distribution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Colorado State University", 
          "id": "https://www.grid.ac/institutes/grid.47894.36", 
          "name": [
            "Department of Computer Science, Colorado State University, Fort Collins, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ben-Hur", 
        "givenName": "Asa", 
        "id": "sg:person.01242755504.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242755504.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "NEC Labs America, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weston", 
        "givenName": "Jason", 
        "id": "sg:person.01242545503.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242545503.37"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/1148170.1148253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010464079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-35488-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021763913", 
          "https://doi.org/10.1007/978-3-540-35488-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-35488-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021763913", 
          "https://doi.org/10.1007/978-3-540-35488-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1022356842", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-21606-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022356842", 
          "https://doi.org/10.1007/978-0-387-21606-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-21606-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022356842", 
          "https://doi.org/10.1007/978-0-387-21606-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00994018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025150743", 
          "https://doi.org/10.1007/bf00994018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/130385.130401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036379424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-30116-5_58", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039779667", 
          "https://doi.org/10.1007/978-3-540-30116-5_58"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1150402.1150429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044904927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1150402.1150531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046643530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1012487302797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048573168", 
          "https://doi.org/10.1023/a:1012487302797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1206-1565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051026888", 
          "https://doi.org/10.1038/nbt1206-1565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1206-1565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051026888", 
          "https://doi.org/10.1038/nbt1206-1565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511809682", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098667572"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-10-30", 
    "datePublishedReg": "2009-10-30", 
    "description": "The Support Vector Machine (SVM) is a widely used classifier in bioinformatics. Obtaining the best results with SVMs requires an understanding of their workings and the various ways a user can influence their accuracy. We provide the user with a basic understanding of the theory behind SVMs and focus on their use in practice. We describe the effect of the SVM parameters on the resulting classifier, how to select good values for those parameters, data normalization, factors that affect training time, and software for training SVMs.", 
    "editor": [
      {
        "familyName": "Carugo", 
        "givenName": "Oliviero", 
        "type": "Person"
      }, 
      {
        "familyName": "Eisenhaber", 
        "givenName": "Frank", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-60327-241-4_13", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-1-60327-240-7", 
        "978-1-60327-241-4"
      ], 
      "name": "Data Mining Techniques for the Life Sciences", 
      "type": "Book"
    }, 
    "name": "A User\u2019s Guide to Support Vector Machines", 
    "pagination": "223-239", 
    "productId": [
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20221922"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042784786"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-60327-241-4_13"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cbcd536938cbb35b09e4a36f370503f4576693dc823696ad9ffd83e2980a7386"
        ]
      }
    ], 
    "publisher": {
      "location": "Totowa, NJ", 
      "name": "Humana Press", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-60327-241-4_13", 
      "https://app.dimensions.ai/details/publication/pub.1042784786"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T07:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000356_0000000356/records_57904_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-1-60327-241-4_13"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-60327-241-4_13'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-60327-241-4_13'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-60327-241-4_13'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-60327-241-4_13'


 

This table displays all metadata directly associated to this object as RDF triples.

164 TRIPLES      23 PREDICATES      49 URIs      30 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-60327-241-4_13 schema:about N0778b3c7af684674bf66bcb7fbbb4fa3
2 N0b2cfcaf3c804a819ae79b2f27ec9e35
3 N0cffdb515f4242219bc32e6b6f6d43b0
4 N132a89db11474176907140e01b8ed547
5 N603b46feb4984cbe87ec0938b00f8a38
6 N6c04d6906f5a4246ba9b128eca606d62
7 Na9682b909ecb4ea09420c0b264da8746
8 Naeeaf0c1bad04459acf0b9477578c319
9 Nbf6e664c9b8945b0806920da0f09f744
10 Nefbf9312c9fb492fb5500772fb2a53d7
11 anzsrc-for:08
12 anzsrc-for:0801
13 schema:author Na2a29c025448404f9caed19252cb246b
14 schema:citation sg:pub.10.1007/978-0-387-21606-5
15 sg:pub.10.1007/978-3-540-30116-5_58
16 sg:pub.10.1007/978-3-540-35488-8
17 sg:pub.10.1007/bf00994018
18 sg:pub.10.1023/a:1012487302797
19 sg:pub.10.1038/nbt1206-1565
20 https://app.dimensions.ai/details/publication/pub.1022356842
21 https://doi.org/10.1017/cbo9780511809682
22 https://doi.org/10.1145/1148170.1148253
23 https://doi.org/10.1145/1150402.1150429
24 https://doi.org/10.1145/1150402.1150531
25 https://doi.org/10.1145/130385.130401
26 schema:datePublished 2009-10-30
27 schema:datePublishedReg 2009-10-30
28 schema:description The Support Vector Machine (SVM) is a widely used classifier in bioinformatics. Obtaining the best results with SVMs requires an understanding of their workings and the various ways a user can influence their accuracy. We provide the user with a basic understanding of the theory behind SVMs and focus on their use in practice. We describe the effect of the SVM parameters on the resulting classifier, how to select good values for those parameters, data normalization, factors that affect training time, and software for training SVMs.
29 schema:editor N966365fda00b4495be9433fac3c288ef
30 schema:genre chapter
31 schema:inLanguage en
32 schema:isAccessibleForFree true
33 schema:isPartOf N0f28c28d980c444082985747ade58f6d
34 schema:name A User’s Guide to Support Vector Machines
35 schema:pagination 223-239
36 schema:productId N66423fad1aa94edf87c33536fb804e87
37 N9209119c98a14bf0b301144a8c79fee4
38 Nf522c17054284e3eaf9b8f69170f532b
39 Nfc37f483a59549489037a8632393d242
40 schema:publisher Nc163d1bb3c2948afadc73a99c0b43844
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042784786
42 https://doi.org/10.1007/978-1-60327-241-4_13
43 schema:sdDatePublished 2019-04-16T07:32
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher N83e3fc714c724b84ad799befed347b55
46 schema:url https://link.springer.com/10.1007%2F978-1-60327-241-4_13
47 sgo:license sg:explorer/license/
48 sgo:sdDataset chapters
49 rdf:type schema:Chapter
50 N0778b3c7af684674bf66bcb7fbbb4fa3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
51 schema:name Databases, Factual
52 rdf:type schema:DefinedTerm
53 N0b2cfcaf3c804a819ae79b2f27ec9e35 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
54 schema:name Normal Distribution
55 rdf:type schema:DefinedTerm
56 N0cffdb515f4242219bc32e6b6f6d43b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
57 schema:name Models, Statistical
58 rdf:type schema:DefinedTerm
59 N0f28c28d980c444082985747ade58f6d schema:isbn 978-1-60327-240-7
60 978-1-60327-241-4
61 schema:name Data Mining Techniques for the Life Sciences
62 rdf:type schema:Book
63 N132a89db11474176907140e01b8ed547 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
64 schema:name Artificial Intelligence
65 rdf:type schema:DefinedTerm
66 N1a6a2887e98d4181b7a853f658616fcf schema:name NEC Labs America, Princeton, NJ, USA
67 rdf:type schema:Organization
68 N21910b5c871d4bb782152f04a1d1fc13 schema:familyName Eisenhaber
69 schema:givenName Frank
70 rdf:type schema:Person
71 N603b46feb4984cbe87ec0938b00f8a38 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Computational Biology
73 rdf:type schema:DefinedTerm
74 N66423fad1aa94edf87c33536fb804e87 schema:name pubmed_id
75 schema:value 20221922
76 rdf:type schema:PropertyValue
77 N6c04d6906f5a4246ba9b128eca606d62 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Data Mining
79 rdf:type schema:DefinedTerm
80 N83e3fc714c724b84ad799befed347b55 schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 N89af21e4a9614892a067a055cb49e66c schema:familyName Carugo
83 schema:givenName Oliviero
84 rdf:type schema:Person
85 N9209119c98a14bf0b301144a8c79fee4 schema:name readcube_id
86 schema:value cbcd536938cbb35b09e4a36f370503f4576693dc823696ad9ffd83e2980a7386
87 rdf:type schema:PropertyValue
88 N966365fda00b4495be9433fac3c288ef rdf:first N89af21e4a9614892a067a055cb49e66c
89 rdf:rest Nc3f4a49a87274862a3324131671510b0
90 Na2a29c025448404f9caed19252cb246b rdf:first sg:person.01242755504.30
91 rdf:rest Nbc7a9f0e0e9b410889799f4b694bd717
92 Na9682b909ecb4ea09420c0b264da8746 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Linear Models
94 rdf:type schema:DefinedTerm
95 Naeeaf0c1bad04459acf0b9477578c319 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Algorithms
97 rdf:type schema:DefinedTerm
98 Nbc7a9f0e0e9b410889799f4b694bd717 rdf:first sg:person.01242545503.37
99 rdf:rest rdf:nil
100 Nbf6e664c9b8945b0806920da0f09f744 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Software
102 rdf:type schema:DefinedTerm
103 Nc163d1bb3c2948afadc73a99c0b43844 schema:location Totowa, NJ
104 schema:name Humana Press
105 rdf:type schema:Organisation
106 Nc3f4a49a87274862a3324131671510b0 rdf:first N21910b5c871d4bb782152f04a1d1fc13
107 rdf:rest rdf:nil
108 Nefbf9312c9fb492fb5500772fb2a53d7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Nonlinear Dynamics
110 rdf:type schema:DefinedTerm
111 Nf522c17054284e3eaf9b8f69170f532b schema:name doi
112 schema:value 10.1007/978-1-60327-241-4_13
113 rdf:type schema:PropertyValue
114 Nfc37f483a59549489037a8632393d242 schema:name dimensions_id
115 schema:value pub.1042784786
116 rdf:type schema:PropertyValue
117 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
118 schema:name Information and Computing Sciences
119 rdf:type schema:DefinedTerm
120 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
121 schema:name Artificial Intelligence and Image Processing
122 rdf:type schema:DefinedTerm
123 sg:person.01242545503.37 schema:affiliation N1a6a2887e98d4181b7a853f658616fcf
124 schema:familyName Weston
125 schema:givenName Jason
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242545503.37
127 rdf:type schema:Person
128 sg:person.01242755504.30 schema:affiliation https://www.grid.ac/institutes/grid.47894.36
129 schema:familyName Ben-Hur
130 schema:givenName Asa
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242755504.30
132 rdf:type schema:Person
133 sg:pub.10.1007/978-0-387-21606-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022356842
134 https://doi.org/10.1007/978-0-387-21606-5
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/978-3-540-30116-5_58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039779667
137 https://doi.org/10.1007/978-3-540-30116-5_58
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/978-3-540-35488-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021763913
140 https://doi.org/10.1007/978-3-540-35488-8
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/bf00994018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025150743
143 https://doi.org/10.1007/bf00994018
144 rdf:type schema:CreativeWork
145 sg:pub.10.1023/a:1012487302797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048573168
146 https://doi.org/10.1023/a:1012487302797
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/nbt1206-1565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051026888
149 https://doi.org/10.1038/nbt1206-1565
150 rdf:type schema:CreativeWork
151 https://app.dimensions.ai/details/publication/pub.1022356842 schema:CreativeWork
152 https://doi.org/10.1017/cbo9780511809682 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098667572
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1145/1148170.1148253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010464079
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1145/1150402.1150429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044904927
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1145/1150402.1150531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046643530
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1145/130385.130401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036379424
161 rdf:type schema:CreativeWork
162 https://www.grid.ac/institutes/grid.47894.36 schema:alternateName Colorado State University
163 schema:name Department of Computer Science, Colorado State University, Fort Collins, CO, USA
164 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...