A User’s Guide to Support Vector Machines View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2009-10-30

AUTHORS

Asa Ben-Hur , Jason Weston

ABSTRACT

The Support Vector Machine (SVM) is a widely used classifier in bioinformatics. Obtaining the best results with SVMs requires an understanding of their workings and the various ways a user can influence their accuracy. We provide the user with a basic understanding of the theory behind SVMs and focus on their use in practice. We describe the effect of the SVM parameters on the resulting classifier, how to select good values for those parameters, data normalization, factors that affect training time, and software for training SVMs. More... »

PAGES

223-239

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-60327-241-4_13

DOI

http://dx.doi.org/10.1007/978-1-60327-241-4_13

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042784786

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20221922


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Artificial Intelligence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Mining", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Factual", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Linear Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nonlinear Dynamics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Normal Distribution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Colorado State University", 
          "id": "https://www.grid.ac/institutes/grid.47894.36", 
          "name": [
            "Department of Computer Science, Colorado State University, Fort Collins, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ben-Hur", 
        "givenName": "Asa", 
        "id": "sg:person.01242755504.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242755504.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "NEC Labs America, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weston", 
        "givenName": "Jason", 
        "id": "sg:person.01242545503.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242545503.37"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/1148170.1148253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010464079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-35488-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021763913", 
          "https://doi.org/10.1007/978-3-540-35488-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-35488-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021763913", 
          "https://doi.org/10.1007/978-3-540-35488-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1022356842", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-21606-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022356842", 
          "https://doi.org/10.1007/978-0-387-21606-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-21606-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022356842", 
          "https://doi.org/10.1007/978-0-387-21606-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00994018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025150743", 
          "https://doi.org/10.1007/bf00994018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/130385.130401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036379424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-30116-5_58", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039779667", 
          "https://doi.org/10.1007/978-3-540-30116-5_58"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1150402.1150429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044904927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1150402.1150531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046643530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1012487302797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048573168", 
          "https://doi.org/10.1023/a:1012487302797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1206-1565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051026888", 
          "https://doi.org/10.1038/nbt1206-1565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1206-1565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051026888", 
          "https://doi.org/10.1038/nbt1206-1565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511809682", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098667572"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-10-30", 
    "datePublishedReg": "2009-10-30", 
    "description": "The Support Vector Machine (SVM) is a widely used classifier in bioinformatics. Obtaining the best results with SVMs requires an understanding of their workings and the various ways a user can influence their accuracy. We provide the user with a basic understanding of the theory behind SVMs and focus on their use in practice. We describe the effect of the SVM parameters on the resulting classifier, how to select good values for those parameters, data normalization, factors that affect training time, and software for training SVMs.", 
    "editor": [
      {
        "familyName": "Carugo", 
        "givenName": "Oliviero", 
        "type": "Person"
      }, 
      {
        "familyName": "Eisenhaber", 
        "givenName": "Frank", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-60327-241-4_13", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-1-60327-240-7", 
        "978-1-60327-241-4"
      ], 
      "name": "Data Mining Techniques for the Life Sciences", 
      "type": "Book"
    }, 
    "name": "A User\u2019s Guide to Support Vector Machines", 
    "pagination": "223-239", 
    "productId": [
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20221922"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042784786"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-60327-241-4_13"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cbcd536938cbb35b09e4a36f370503f4576693dc823696ad9ffd83e2980a7386"
        ]
      }
    ], 
    "publisher": {
      "location": "Totowa, NJ", 
      "name": "Humana Press", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-60327-241-4_13", 
      "https://app.dimensions.ai/details/publication/pub.1042784786"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T07:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000356_0000000356/records_57904_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-1-60327-241-4_13"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-60327-241-4_13'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-60327-241-4_13'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-60327-241-4_13'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-60327-241-4_13'


 

This table displays all metadata directly associated to this object as RDF triples.

164 TRIPLES      23 PREDICATES      49 URIs      30 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-60327-241-4_13 schema:about N0f7eb48ea69945afb034cb8ae71e58f3
2 N16a88ab410304ea7b1b1165c90d66245
3 N2a0d78f2271b4907863cd1baeb6cc8ee
4 N3f57891da5fc4af0b23182391dc165b3
5 N64b6ea2ba8c046cab5348fad50493981
6 N89e1b5ebe22844639a39cc32701306d4
7 Na0e56413349749bfb5450ee7a0872b82
8 Ne3030f0734844fcd955dd7c8de618e0d
9 Nf48b24ccdbb6448d82dda472436367b0
10 Nfa309826cf034b5abe6dc645d5179b2c
11 anzsrc-for:08
12 anzsrc-for:0801
13 schema:author Ne14f32b6e3704c43ac6ec32c7645a16a
14 schema:citation sg:pub.10.1007/978-0-387-21606-5
15 sg:pub.10.1007/978-3-540-30116-5_58
16 sg:pub.10.1007/978-3-540-35488-8
17 sg:pub.10.1007/bf00994018
18 sg:pub.10.1023/a:1012487302797
19 sg:pub.10.1038/nbt1206-1565
20 https://app.dimensions.ai/details/publication/pub.1022356842
21 https://doi.org/10.1017/cbo9780511809682
22 https://doi.org/10.1145/1148170.1148253
23 https://doi.org/10.1145/1150402.1150429
24 https://doi.org/10.1145/1150402.1150531
25 https://doi.org/10.1145/130385.130401
26 schema:datePublished 2009-10-30
27 schema:datePublishedReg 2009-10-30
28 schema:description The Support Vector Machine (SVM) is a widely used classifier in bioinformatics. Obtaining the best results with SVMs requires an understanding of their workings and the various ways a user can influence their accuracy. We provide the user with a basic understanding of the theory behind SVMs and focus on their use in practice. We describe the effect of the SVM parameters on the resulting classifier, how to select good values for those parameters, data normalization, factors that affect training time, and software for training SVMs.
29 schema:editor Naf82b8c5698849b29e03ea9ac0b05815
30 schema:genre chapter
31 schema:inLanguage en
32 schema:isAccessibleForFree true
33 schema:isPartOf Naf6e5c044b1a42d28869283ea7b9a357
34 schema:name A User’s Guide to Support Vector Machines
35 schema:pagination 223-239
36 schema:productId N0259bfe5cca74020b200f29f0e78e1c7
37 N24251260c4764a849fb2acb0893932f6
38 N92e7f56bf41c44139aafd8fd6725a418
39 Nad5a471b5f9e4667b81358b250b1a11f
40 schema:publisher N29dd9a2661ca488fbaa303eddb262f53
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042784786
42 https://doi.org/10.1007/978-1-60327-241-4_13
43 schema:sdDatePublished 2019-04-16T07:32
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher N9bafa2b2b04f41319f9b4995bfab767d
46 schema:url https://link.springer.com/10.1007%2F978-1-60327-241-4_13
47 sgo:license sg:explorer/license/
48 sgo:sdDataset chapters
49 rdf:type schema:Chapter
50 N0259bfe5cca74020b200f29f0e78e1c7 schema:name pubmed_id
51 schema:value 20221922
52 rdf:type schema:PropertyValue
53 N0ace0d57271940d1a06a3674e23aee68 schema:familyName Eisenhaber
54 schema:givenName Frank
55 rdf:type schema:Person
56 N0f7eb48ea69945afb034cb8ae71e58f3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
57 schema:name Algorithms
58 rdf:type schema:DefinedTerm
59 N16a88ab410304ea7b1b1165c90d66245 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
60 schema:name Computational Biology
61 rdf:type schema:DefinedTerm
62 N24251260c4764a849fb2acb0893932f6 schema:name dimensions_id
63 schema:value pub.1042784786
64 rdf:type schema:PropertyValue
65 N29dd9a2661ca488fbaa303eddb262f53 schema:location Totowa, NJ
66 schema:name Humana Press
67 rdf:type schema:Organisation
68 N2a0d78f2271b4907863cd1baeb6cc8ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Normal Distribution
70 rdf:type schema:DefinedTerm
71 N3f57891da5fc4af0b23182391dc165b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Linear Models
73 rdf:type schema:DefinedTerm
74 N509057abfdf14c81afaca8c7380f82c4 rdf:first sg:person.01242545503.37
75 rdf:rest rdf:nil
76 N64b6ea2ba8c046cab5348fad50493981 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Nonlinear Dynamics
78 rdf:type schema:DefinedTerm
79 N89e1b5ebe22844639a39cc32701306d4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Models, Statistical
81 rdf:type schema:DefinedTerm
82 N92e7f56bf41c44139aafd8fd6725a418 schema:name doi
83 schema:value 10.1007/978-1-60327-241-4_13
84 rdf:type schema:PropertyValue
85 N9bafa2b2b04f41319f9b4995bfab767d schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 Na0e56413349749bfb5450ee7a0872b82 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Databases, Factual
89 rdf:type schema:DefinedTerm
90 Nad5a471b5f9e4667b81358b250b1a11f schema:name readcube_id
91 schema:value cbcd536938cbb35b09e4a36f370503f4576693dc823696ad9ffd83e2980a7386
92 rdf:type schema:PropertyValue
93 Naf6e5c044b1a42d28869283ea7b9a357 schema:isbn 978-1-60327-240-7
94 978-1-60327-241-4
95 schema:name Data Mining Techniques for the Life Sciences
96 rdf:type schema:Book
97 Naf82b8c5698849b29e03ea9ac0b05815 rdf:first Nc67ee68fabfb4ebd917431c9a6f80a6e
98 rdf:rest Neb248365749b4945963cd407eb28c4ed
99 Nc67ee68fabfb4ebd917431c9a6f80a6e schema:familyName Carugo
100 schema:givenName Oliviero
101 rdf:type schema:Person
102 Ne14f32b6e3704c43ac6ec32c7645a16a rdf:first sg:person.01242755504.30
103 rdf:rest N509057abfdf14c81afaca8c7380f82c4
104 Ne3030f0734844fcd955dd7c8de618e0d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Software
106 rdf:type schema:DefinedTerm
107 Neb248365749b4945963cd407eb28c4ed rdf:first N0ace0d57271940d1a06a3674e23aee68
108 rdf:rest rdf:nil
109 Nf48b24ccdbb6448d82dda472436367b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Artificial Intelligence
111 rdf:type schema:DefinedTerm
112 Nfa309826cf034b5abe6dc645d5179b2c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Data Mining
114 rdf:type schema:DefinedTerm
115 Nfd73d218ae054191b600cbc10d6fc556 schema:name NEC Labs America, Princeton, NJ, USA
116 rdf:type schema:Organization
117 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
118 schema:name Information and Computing Sciences
119 rdf:type schema:DefinedTerm
120 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
121 schema:name Artificial Intelligence and Image Processing
122 rdf:type schema:DefinedTerm
123 sg:person.01242545503.37 schema:affiliation Nfd73d218ae054191b600cbc10d6fc556
124 schema:familyName Weston
125 schema:givenName Jason
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242545503.37
127 rdf:type schema:Person
128 sg:person.01242755504.30 schema:affiliation https://www.grid.ac/institutes/grid.47894.36
129 schema:familyName Ben-Hur
130 schema:givenName Asa
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242755504.30
132 rdf:type schema:Person
133 sg:pub.10.1007/978-0-387-21606-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022356842
134 https://doi.org/10.1007/978-0-387-21606-5
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/978-3-540-30116-5_58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039779667
137 https://doi.org/10.1007/978-3-540-30116-5_58
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/978-3-540-35488-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021763913
140 https://doi.org/10.1007/978-3-540-35488-8
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/bf00994018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025150743
143 https://doi.org/10.1007/bf00994018
144 rdf:type schema:CreativeWork
145 sg:pub.10.1023/a:1012487302797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048573168
146 https://doi.org/10.1023/a:1012487302797
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/nbt1206-1565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051026888
149 https://doi.org/10.1038/nbt1206-1565
150 rdf:type schema:CreativeWork
151 https://app.dimensions.ai/details/publication/pub.1022356842 schema:CreativeWork
152 https://doi.org/10.1017/cbo9780511809682 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098667572
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1145/1148170.1148253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010464079
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1145/1150402.1150429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044904927
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1145/1150402.1150531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046643530
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1145/130385.130401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036379424
161 rdf:type schema:CreativeWork
162 https://www.grid.ac/institutes/grid.47894.36 schema:alternateName Colorado State University
163 schema:name Department of Computer Science, Colorado State University, Fort Collins, CO, USA
164 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...