Construction and Hyperspectral Imaging of Quantum Dot Lysate Arrays View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011-10-21

AUTHORS

Kevin P. Rosenblatt , Michael L. Huebschman , Harold R. Garner

ABSTRACT

The emerging field of proteomic molecular profiling will be driven by new technologies that can measure dozens to hundreds of proteins from a small sample input from a patient’s biopsy. Lysate arrays, or reverse-phase protein microarrays, provide a platform for complex mixtures of proteins extracted from cells and tissues to be directly immobilized onto a solid support (such as a biochip with protein binding capacity) in diminutive volumes (picoliter-to-nanoliter). The proteins are spotted using precision robotics and then quantitatively assayed using primary antibodies; important posttranslational modifications, such as phosphorylations that are important for protein activation, may also be assayed to provide an estimate of the regulation of cellular signaling. Until recently, chromogenic signals and fluorescence (using organic fluorophores) detection were two strategies relied upon for signal detection. Emerging regents such as quantum dots (Qdot® nanocrystals; QD) are now employed for improved performance. QD embody a more versatile detection system because the robust signals may be time averaged and the narrow spectral emissions enable many protein targets to be quantified within the same lysate spot. Previously, we found that commercially available pegylated, streptavidin-conjugated QD were effective detection agents, with low-background affinities to spurious components within heterogeneous protein mixtures. Hyperspectral imaging allows the simultaneous detection of the different colored QD reagents within a single lysate spot. Here, we described the construction and imaging of QD lysate arrays. This technology is an emerging, enabling tool within the exciting, clinically oriented field of clinical tissue proteomics. More... »

PAGES

311-324

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-60327-216-2_20

DOI

http://dx.doi.org/10.1007/978-1-60327-216-2_20

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045147817

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22081354


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Array Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quantum Dots", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Staining and Labeling", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Health Science Center CCTS Proteomics Core, The Brown Foundation Institute of Molecular Medicine/UT, Houston, TX, USA", 
          "id": "http://www.grid.ac/institutes/grid.267308.8", 
          "name": [
            "Health Science Center CCTS Proteomics Core, The Brown Foundation Institute of Molecular Medicine/UT, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rosenblatt", 
        "givenName": "Kevin P.", 
        "id": "sg:person.0605436155.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605436155.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "McDermott Center for Human Genetics, UT Southwestern Medical Center, Dallas, TX, USA", 
          "id": "http://www.grid.ac/institutes/grid.267313.2", 
          "name": [
            "McDermott Center for Human Genetics, UT Southwestern Medical Center, Dallas, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huebschman", 
        "givenName": "Michael L.", 
        "id": "sg:person.01325162353.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325162353.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA", 
          "id": "http://www.grid.ac/institutes/grid.438526.e", 
          "name": [
            "Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garner", 
        "givenName": "Harold R.", 
        "id": "sg:person.0613230631.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613230631.83"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2011-10-21", 
    "datePublishedReg": "2011-10-21", 
    "description": "The emerging field of proteomic molecular profiling will be driven by new technologies that can measure dozens to hundreds of proteins from a small sample input from a patient\u2019s biopsy. Lysate arrays, or reverse-phase protein microarrays, provide a platform for complex mixtures of proteins extracted from cells and tissues to be directly immobilized onto a solid support (such as a biochip with protein binding capacity) in diminutive volumes (picoliter-to-nanoliter). The proteins are spotted using precision robotics and then quantitatively assayed using primary antibodies; important posttranslational modifications, such as phosphorylations that are important for protein activation, may also be assayed to provide an estimate of the regulation of cellular signaling. Until recently, chromogenic signals and fluorescence (using organic fluorophores) detection were two strategies relied upon for signal detection. Emerging regents such as quantum dots (Qdot\u00ae nanocrystals; QD) are now employed for improved performance. QD embody a more versatile detection system because the robust signals may be time averaged and the narrow spectral emissions enable many protein targets to be quantified within the same lysate spot. Previously, we found that commercially available pegylated, streptavidin-conjugated QD were effective detection agents, with low-background affinities to spurious components within heterogeneous protein mixtures. Hyperspectral imaging allows the simultaneous detection of the different colored QD reagents within a single lysate spot. Here, we described the construction and imaging of QD lysate arrays. This technology is an emerging, enabling tool within the exciting, clinically oriented field of clinical tissue proteomics.", 
    "editor": [
      {
        "familyName": "Espina", 
        "givenName": "Virginia", 
        "type": "Person"
      }, 
      {
        "familyName": "Liotta", 
        "givenName": "Lance A.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-60327-216-2_20", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-60327-215-5", 
        "978-1-60327-216-2"
      ], 
      "name": "Molecular Profiling", 
      "type": "Book"
    }, 
    "keywords": [
      "lysate arrays", 
      "hundreds of proteins", 
      "reverse-phase protein microarray", 
      "important posttranslational modification", 
      "heterogeneous protein mixtures", 
      "cellular signaling", 
      "posttranslational modifications", 
      "protein targets", 
      "protein activation", 
      "tissue proteomics", 
      "protein microarrays", 
      "protein", 
      "molecular profiling", 
      "protein mixtures", 
      "versatile detection system", 
      "precision robotics", 
      "chromogenic signals", 
      "diminutive volume", 
      "proteomics", 
      "phosphorylation", 
      "robust signal", 
      "signaling", 
      "narrow spectral emission", 
      "complex mixtures", 
      "microarrays", 
      "patient biopsies", 
      "regulation", 
      "profiling", 
      "sample input", 
      "simultaneous detection", 
      "spots", 
      "cells", 
      "activation", 
      "target", 
      "affinity", 
      "signals", 
      "primary antibody", 
      "tissue", 
      "dozens", 
      "array", 
      "hundreds", 
      "modification", 
      "antibodies", 
      "fluorescence detection", 
      "solid support", 
      "components", 
      "reagents", 
      "detection", 
      "agents", 
      "strategies", 
      "tool", 
      "mixture", 
      "new technologies", 
      "platform", 
      "hyperspectral imaging", 
      "detection agent", 
      "technology", 
      "system", 
      "estimates", 
      "construction", 
      "field", 
      "time", 
      "input", 
      "regents", 
      "imaging", 
      "signal detection", 
      "support", 
      "detection system", 
      "spectral emission", 
      "volume", 
      "emission", 
      "biopsy", 
      "dots", 
      "improved performance", 
      "QDs", 
      "performance", 
      "quantum dots", 
      "spurious components", 
      "robotics", 
      "proteomic molecular profiling", 
      "small sample input", 
      "same lysate spot", 
      "lysate spot", 
      "streptavidin-conjugated QD", 
      "effective detection agents", 
      "low-background affinities", 
      "QD reagents", 
      "single lysate spot", 
      "QD lysate arrays", 
      "clinical tissue proteomics", 
      "Quantum Dot Lysate Arrays", 
      "Dot Lysate Arrays"
    ], 
    "name": "Construction and Hyperspectral Imaging of Quantum Dot Lysate Arrays", 
    "pagination": "311-324", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045147817"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-60327-216-2_20"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22081354"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-60327-216-2_20", 
      "https://app.dimensions.ai/details/publication/pub.1045147817"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_139.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-60327-216-2_20"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-60327-216-2_20'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-60327-216-2_20'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-60327-216-2_20'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-60327-216-2_20'


 

This table displays all metadata directly associated to this object as RDF triples.

209 TRIPLES      23 PREDICATES      125 URIs      118 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-60327-216-2_20 schema:about N1a300d0cd44a4a6d81873e9610fbbf57
2 N57beeca19d384c0a9822899f916c2374
3 N7812a387700a4985adfb71bb4684505c
4 N930c22dd6e7245fd821743660ddf0249
5 Nd29f2f5374334603ab2f5e044977d2ae
6 Nece73155b638431ca801e70688ff053c
7 Nf73fe2d051494a49bcddebc742cf2098
8 anzsrc-for:06
9 anzsrc-for:0601
10 schema:author N243deb56d941426ebc497a0293f0f4a5
11 schema:datePublished 2011-10-21
12 schema:datePublishedReg 2011-10-21
13 schema:description The emerging field of proteomic molecular profiling will be driven by new technologies that can measure dozens to hundreds of proteins from a small sample input from a patient’s biopsy. Lysate arrays, or reverse-phase protein microarrays, provide a platform for complex mixtures of proteins extracted from cells and tissues to be directly immobilized onto a solid support (such as a biochip with protein binding capacity) in diminutive volumes (picoliter-to-nanoliter). The proteins are spotted using precision robotics and then quantitatively assayed using primary antibodies; important posttranslational modifications, such as phosphorylations that are important for protein activation, may also be assayed to provide an estimate of the regulation of cellular signaling. Until recently, chromogenic signals and fluorescence (using organic fluorophores) detection were two strategies relied upon for signal detection. Emerging regents such as quantum dots (Qdot® nanocrystals; QD) are now employed for improved performance. QD embody a more versatile detection system because the robust signals may be time averaged and the narrow spectral emissions enable many protein targets to be quantified within the same lysate spot. Previously, we found that commercially available pegylated, streptavidin-conjugated QD were effective detection agents, with low-background affinities to spurious components within heterogeneous protein mixtures. Hyperspectral imaging allows the simultaneous detection of the different colored QD reagents within a single lysate spot. Here, we described the construction and imaging of QD lysate arrays. This technology is an emerging, enabling tool within the exciting, clinically oriented field of clinical tissue proteomics.
14 schema:editor Naa8647a9d41e4913a542582571f6b06a
15 schema:genre chapter
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N44c031c84f7247458f4e416036197518
19 schema:keywords Dot Lysate Arrays
20 QD lysate arrays
21 QD reagents
22 QDs
23 Quantum Dot Lysate Arrays
24 activation
25 affinity
26 agents
27 antibodies
28 array
29 biopsy
30 cells
31 cellular signaling
32 chromogenic signals
33 clinical tissue proteomics
34 complex mixtures
35 components
36 construction
37 detection
38 detection agent
39 detection system
40 diminutive volume
41 dots
42 dozens
43 effective detection agents
44 emission
45 estimates
46 field
47 fluorescence detection
48 heterogeneous protein mixtures
49 hundreds
50 hundreds of proteins
51 hyperspectral imaging
52 imaging
53 important posttranslational modification
54 improved performance
55 input
56 low-background affinities
57 lysate arrays
58 lysate spot
59 microarrays
60 mixture
61 modification
62 molecular profiling
63 narrow spectral emission
64 new technologies
65 patient biopsies
66 performance
67 phosphorylation
68 platform
69 posttranslational modifications
70 precision robotics
71 primary antibody
72 profiling
73 protein
74 protein activation
75 protein microarrays
76 protein mixtures
77 protein targets
78 proteomic molecular profiling
79 proteomics
80 quantum dots
81 reagents
82 regents
83 regulation
84 reverse-phase protein microarray
85 robotics
86 robust signal
87 same lysate spot
88 sample input
89 signal detection
90 signaling
91 signals
92 simultaneous detection
93 single lysate spot
94 small sample input
95 solid support
96 spectral emission
97 spots
98 spurious components
99 strategies
100 streptavidin-conjugated QD
101 support
102 system
103 target
104 technology
105 time
106 tissue
107 tissue proteomics
108 tool
109 versatile detection system
110 volume
111 schema:name Construction and Hyperspectral Imaging of Quantum Dot Lysate Arrays
112 schema:pagination 311-324
113 schema:productId N16291fdfd1d7498fae158c822d984c68
114 N3ff394fa89214896a5623c5838777bc4
115 N62d43da67ce44adbb6b86f3f608ccb33
116 schema:publisher N5aeeb4edc34849ba83e8bfb95e369811
117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045147817
118 https://doi.org/10.1007/978-1-60327-216-2_20
119 schema:sdDatePublished 2022-01-01T19:08
120 schema:sdLicense https://scigraph.springernature.com/explorer/license/
121 schema:sdPublisher Ne3df620d4efc4742a93dee5a114c32d0
122 schema:url https://doi.org/10.1007/978-1-60327-216-2_20
123 sgo:license sg:explorer/license/
124 sgo:sdDataset chapters
125 rdf:type schema:Chapter
126 N16291fdfd1d7498fae158c822d984c68 schema:name dimensions_id
127 schema:value pub.1045147817
128 rdf:type schema:PropertyValue
129 N1a300d0cd44a4a6d81873e9610fbbf57 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Staining and Labeling
131 rdf:type schema:DefinedTerm
132 N2132c0be9b3a445d95f93a7df378c9e3 rdf:first Nd58d8f4a7b99415f8b90a4171c612906
133 rdf:rest rdf:nil
134 N243deb56d941426ebc497a0293f0f4a5 rdf:first sg:person.0605436155.80
135 rdf:rest Ne6d3ce9ba6aa406698038a2c3154eec9
136 N3ff394fa89214896a5623c5838777bc4 schema:name doi
137 schema:value 10.1007/978-1-60327-216-2_20
138 rdf:type schema:PropertyValue
139 N44c031c84f7247458f4e416036197518 schema:isbn 978-1-60327-215-5
140 978-1-60327-216-2
141 schema:name Molecular Profiling
142 rdf:type schema:Book
143 N57beeca19d384c0a9822899f916c2374 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Image Processing, Computer-Assisted
145 rdf:type schema:DefinedTerm
146 N5aeeb4edc34849ba83e8bfb95e369811 schema:name Springer Nature
147 rdf:type schema:Organisation
148 N62d43da67ce44adbb6b86f3f608ccb33 schema:name pubmed_id
149 schema:value 22081354
150 rdf:type schema:PropertyValue
151 N7812a387700a4985adfb71bb4684505c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Quantum Dots
153 rdf:type schema:DefinedTerm
154 N930c22dd6e7245fd821743660ddf0249 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Humans
156 rdf:type schema:DefinedTerm
157 Naa8647a9d41e4913a542582571f6b06a rdf:first Nad3887406cd24520a68bb64b3f49209d
158 rdf:rest N2132c0be9b3a445d95f93a7df378c9e3
159 Nad3887406cd24520a68bb64b3f49209d schema:familyName Espina
160 schema:givenName Virginia
161 rdf:type schema:Person
162 Nd29f2f5374334603ab2f5e044977d2ae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Proteomics
164 rdf:type schema:DefinedTerm
165 Nd58d8f4a7b99415f8b90a4171c612906 schema:familyName Liotta
166 schema:givenName Lance A.
167 rdf:type schema:Person
168 Ne3df620d4efc4742a93dee5a114c32d0 schema:name Springer Nature - SN SciGraph project
169 rdf:type schema:Organization
170 Ne489ad1016f641f7bee201d84652d10f rdf:first sg:person.0613230631.83
171 rdf:rest rdf:nil
172 Ne6d3ce9ba6aa406698038a2c3154eec9 rdf:first sg:person.01325162353.43
173 rdf:rest Ne489ad1016f641f7bee201d84652d10f
174 Nece73155b638431ca801e70688ff053c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Protein Array Analysis
176 rdf:type schema:DefinedTerm
177 Nf73fe2d051494a49bcddebc742cf2098 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Proteins
179 rdf:type schema:DefinedTerm
180 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
181 schema:name Biological Sciences
182 rdf:type schema:DefinedTerm
183 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
184 schema:name Biochemistry and Cell Biology
185 rdf:type schema:DefinedTerm
186 sg:person.01325162353.43 schema:affiliation grid-institutes:grid.267313.2
187 schema:familyName Huebschman
188 schema:givenName Michael L.
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325162353.43
190 rdf:type schema:Person
191 sg:person.0605436155.80 schema:affiliation grid-institutes:grid.267308.8
192 schema:familyName Rosenblatt
193 schema:givenName Kevin P.
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605436155.80
195 rdf:type schema:Person
196 sg:person.0613230631.83 schema:affiliation grid-institutes:grid.438526.e
197 schema:familyName Garner
198 schema:givenName Harold R.
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613230631.83
200 rdf:type schema:Person
201 grid-institutes:grid.267308.8 schema:alternateName Health Science Center CCTS Proteomics Core, The Brown Foundation Institute of Molecular Medicine/UT, Houston, TX, USA
202 schema:name Health Science Center CCTS Proteomics Core, The Brown Foundation Institute of Molecular Medicine/UT, Houston, TX, USA
203 rdf:type schema:Organization
204 grid-institutes:grid.267313.2 schema:alternateName McDermott Center for Human Genetics, UT Southwestern Medical Center, Dallas, TX, USA
205 schema:name McDermott Center for Human Genetics, UT Southwestern Medical Center, Dallas, TX, USA
206 rdf:type schema:Organization
207 grid-institutes:grid.438526.e schema:alternateName Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
208 schema:name Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
209 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...